

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc852tzt100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Up to 30 wait states programmable per memory bank
- Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory devices
- DRAM controller-programmable to support most size and speed memory interfaces
- Four $\overline{\text{CAS}}$ lines, four $\overline{\text{WE}}$ lines, and one $\overline{\text{OE}}$ line
- Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
- Variable block sizes (32 Kbytes–256 Mbytes)
- Selectable write protection
- On-chip bus arbitration logic
- Fast Ethernet controller (FEC)
- General-purpose timers
 - Two 16-bit timers or one 32-bit timer
 - Gate mode can enable or disable counting
 - Interrupt can be masked on reference match and event capture
- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer and time base
 - Reset controller
 - IEEE 1149.1TM standard test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - Seven port pins with interrupt capability
 - Eighteen internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest-priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - 8-Kbytes of dual-port RAM
 - Eight serial DMA (SDMA) channels
 - Three parallel I/O registers with open-drain capability

Features

- Two baud rate generators
 - Independent (can be connected to any SCC3/4 or SMC1)
 - Allows changes during operation
 - Autobaud support option
- Two SCCs (serial communication controllers)
 - Ethernet/IEEE 802.3® standard optional on SCC3 and SCC4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Universal asynchronous receiver transmitter (UART)
 - Totally transparent (bit streams)
 - Totally transparent (frame-based with optional cyclic redundancy check (CRC))
- One SMC (serial management channel)
 - UART
- One SPI (serial peripheral interface)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one independent PCMCIA socket; 8-memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a break point internally
- · Normal high and normal low power modes to conserve power
- 1.8 V core and 3.3-V I/O operation with 5-V TTL compatibility. Refer to Table 5 for a listing of the 5-V tolerant pins.

Figure 1 shows the MPC852T block diagram.

9 Power Supply and Power Sequencing

This section provides design considerations for the MPC852T power supply. The MPC852T has a core voltage (V_{DDL}) and PLL voltage (V_{DDSYN}) that operates at a lower voltage than the I/O voltage V_{DDH} . The I/O section of the MPC852T is supplied with 3.3 V across V_{DDH} and V_{SS} (GND).

The signals PA[0:3], PA[8:11], PB15, PB[24:25]; PB[28:31], PC[4:7], PC[12:13], PC15] PD[3:15], TDI, TDO, TCK, TRST, TMS, MII_TXEN, MII_MDIO are 5-V tolerant. All inputs cannot be more than 2.5 V greater than V_{DDH}. In addition, 5-V tolerant pins can not exceed 5.5 V, and the remaining input pins cannot exceed 3.465 V. This restriction applies to power-on reset or power down and normal operation.

One consequence of multiple power supplies is that when power is initially applied, the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- ullet V_{DDL} must not exceed V_{DDH} during power-on reset or power down.
- V_{DDL} must not exceed 1.9 V, and V_{DDH} must not exceed 3.465.

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown in Figure 3 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power-on reset, and the 1N5820 diodes regulate the maximum potential difference on power-down.

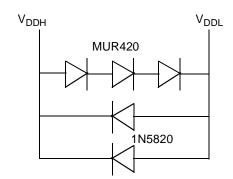
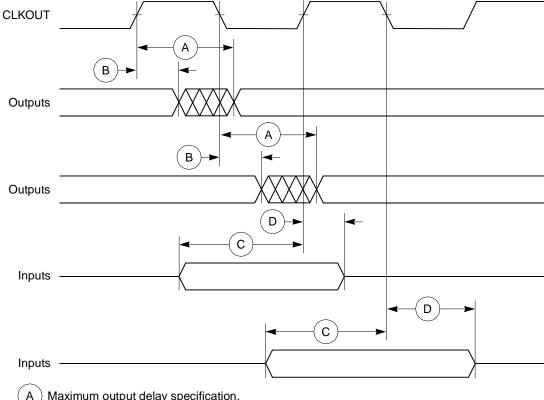


Figure 3. Example Voltage Sequencing Circuit

10 Mandatory Reset Configurations

The MPC852T requires a mandatory configuration during reset.


If hardware reset configuration word (HRCW) is enabled, by asserting the $\overline{RSTCONF}$ during \overline{HRESET} assertion, the HRCW[DBGC] value that is needed to be set to binary X1 in the hardware reset configuration word (HRCW) and the SIUMCR[DBGC] should be programmed with the same value in the boot code after reset.

If hardware reset configuration word (HRCW) is disabled, by negating the $\overline{RSTCONF}$ during the \overline{HRESET} assertion, the SIUMCR[DBGC] should be programmed with binary X1 in the boot code after reset.

Bus Signal Timing

Figure 4 is the control timing diagram.

- Maximum output delay specification.
- B) Minimum output hold time.
- Minimum input setup time specification.
- Minimum input hold time specification.

Figure 4. Control Timing

Figure 5 provides the timing for the external clock.

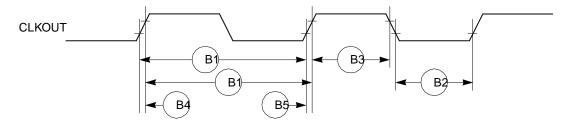


Figure 5. External Clock Timing

Bus Signal Timing

Figure 8 provides the timing for the synchronous input signals.

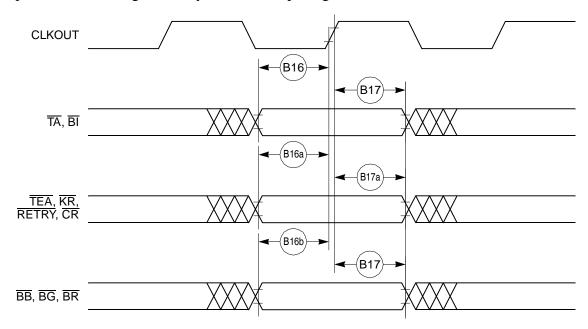


Figure 8. Synchronous Input Signals Timing

Figure 9 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

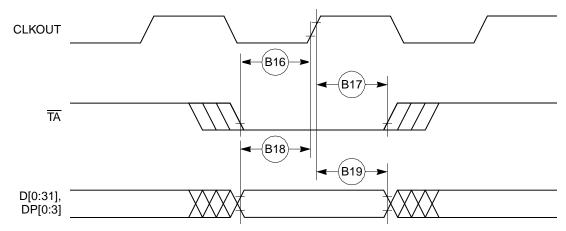


Figure 9. Input Data Timing in Normal Case

Bus Signal Timing

Table 14 shows the reset timing for the MPC852T.

Table 14. Reset Timing

		33 [ИНz	40 N	ИHz	50 MHz		66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
J82	CLKOUT to HRESET high impedance (MAX = 0.00 × B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
J83	CLKOUT to SRESET high impedance (MAX = 0.00 × B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
J84	$\overline{RSTCONF}$ pulse width (MIN = 17.00 × B1)	515.20		425.00	_	340.00	_	257.60	_	ns
J85	_	_	_	_	_	_	_	_	_	_
J86	Configuration data to HRESET rising edge set up time (MIN = $15.00 \times B1 + 50.00$)	504.50	_	425.00	_	350.00	_	277.30	_	ns
J87	Configuration data to $\overline{\text{RSTCONF}}$ rising edge set up time (MIN = $0.00 \times \text{B1} + 350.00$)	350.00	_	350.00	_	350.00	_	350.00	_	ns
J88	Configuration data hold time after RSTCONF negation (MIN = 0.00 × B1 + 0.00)	0.00		0.00	_	0.00		0.00	_	ns
J89	Configuration data hold time after HRESET negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
J90	$\overline{\text{HRESET}}$ and $\overline{\text{RSTCONF}}$ asserted to data out drive (MAX = $0.00 \times \text{B1} + 25.00$)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J91	$\overline{\text{RSTCONF}}$ negated to data out high impedance. (MAX = $0.00 \times \text{B1} + 25.00$)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J92	CLKOUT of last rising edge before chip three-states $\overline{\text{HRESET}}$ to data out high impedance. (MAX = $0.00 \times \text{B1} + 25.00$)	_	25.00	_	25.00	_	25.00	_	25.00	ns
J93	DSDI, DSCK set up (MIN = $3.00 \times B1$)	90.90	_	75.00	_	60.00	_	45.50	_	ns
J94	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
J95	$\begin{tabular}{ll} \hline SRESET & negated to CLKOUT rising edge\\ for DSDI & and DSCK sample\\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	160.00	_	121.20	_	ns

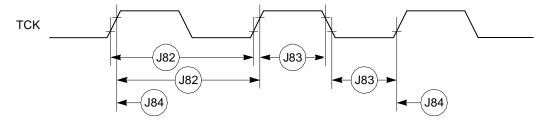


Figure 36. JTAG Test Clock Input Timing

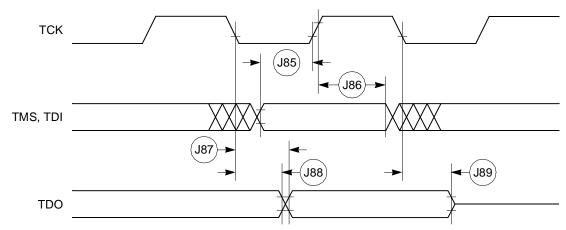


Figure 37. JTAG Test Access Port Timing Diagram

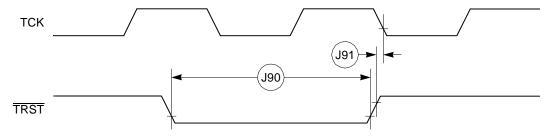


Figure 38. JTAG TRST Timing Diagram

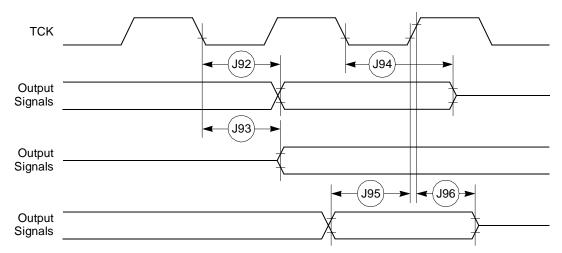


Figure 39. Boundary Scan (JTAG) Timing Diagram

MPC852T PowerQUICC™ Hardware Specifications, Rev. 4

14.2 IDMA Controller AC Electrical Specifications

Table 17 provides the IDMA controller timings as shown in Figure 41 through Figure 44.

Table 17. IDMA Controller Timing

Num	Characteristic	All Freq	l lmit	
Num	Characteristic	Min	Max	Unit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high ¹	3	_	ns
42	SDACK assertion delay from clock high	_	12	ns
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	TA assertion to rising edge of the clock setup time (applies to external TA)	7	_	ns

Applies to high-to-low mode (EDM = 1).

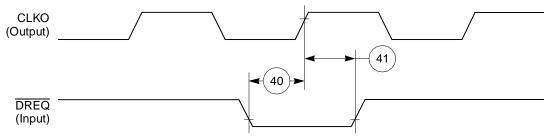


Figure 41. IDMA External Requests Timing Diagram

14.4 Timer AC Electrical Specifications

Table 19 provides the general-purpose timer timings as shown in Figure 46.

Table 19. Timer Timing

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Max	Onit
61	61 TIN/TGATE rise and fall time		_	ns
62	TIN/TGATE low time	1	_	clk
63	3 TIN/TGATE high time		_	clk
64	64 TIN/TGATE cycle time		_	clk
65	CLKO low to TOUT valid	3	25	ns

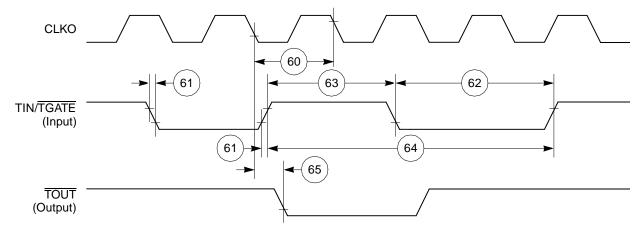


Figure 46. CPM General-Purpose Timers Timing Diagram

14.5 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freque	Unit	
Num	Gilalacteristic	Min	Max	
100	RCLK3 and TCLK3 width high ¹	1/SYNCCLK	_	ns
101	RCLK3 and TCLK3 width low	1/SYNCCLK + 5	_	ns
102	RCLK3 and TCLK3 rise/fall time	_	15.00	ns
103	TXD3 active delay (from TCLK3 falling edge)	0.00	50.00	ns
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	50.00	ns
105	CTS3 setup time to TCLK3 rising edge	5.00	_	ns
106	RXD3 setup time to RCLK3 rising edge	5.00	_	ns

CPM Electrical Characteristics

Figure 47 through Figure 49 show the NMSI timings.

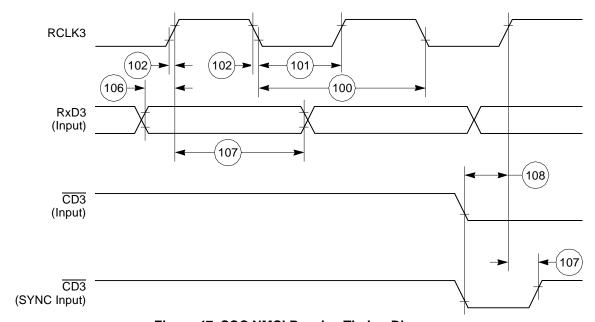


Figure 47. SCC NMSI Receive Timing Diagram

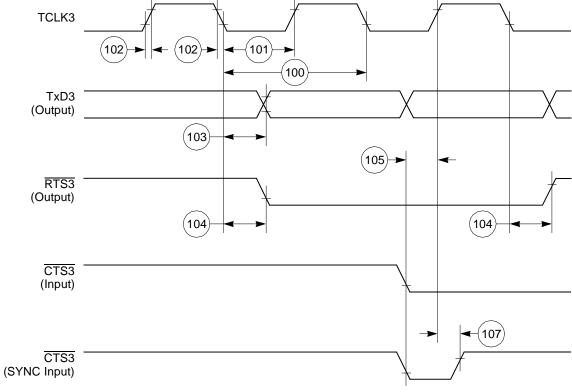


Figure 48. SCC NMSI Transmit Timing Diagram

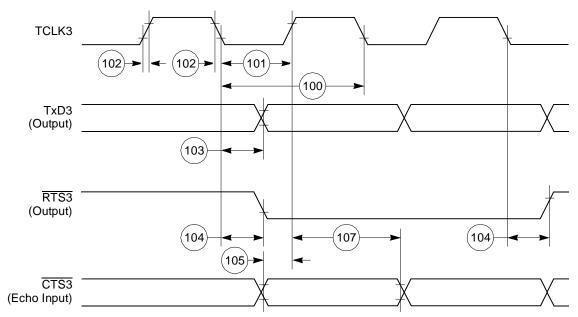


Figure 49. HDLC Bus Timing Diagram

14.6 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 50 through Figure 54.

Table 22. Ethernet Timing

Num	Characteristic	All Freq	luencies	Unit
Num	Characteristic	Min	Max	Unit
120	CLSN width high	40	_	ns
121	RCLK3 rise/fall time	_	15	ns
122	RCLK3 width low	40	_	ns
123	RCLK3 clock period ¹	80	120	ns
124	RXD3 setup time	20	_	ns
125	RXD3 hold time	5	_	ns
126	RENA active delay (from RCLK3 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK3 rise/fall time	_	15	ns
129	TCLK3 width low	40	_	ns
130	TCLK3 clock period ¹	99	101	ns
131	TXD3 active delay (from TCLK3 rising edge)	_	50	ns
132	TXD3 inactive delay (from TCLK3 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK3 rising edge)	10	50	ns
134	TENA inactive delay (from TCLK3 rising edge)	10	50	ns

MPC852T PowerQUICC™ Hardware Specifications, Rev. 4

FEC Electrical Characteristics

Table 26 provides information about the MII transmit signal timing,.

Table 26. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	_	25	_
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period

Figure 60 shows the MII transmit signal timing diagram.

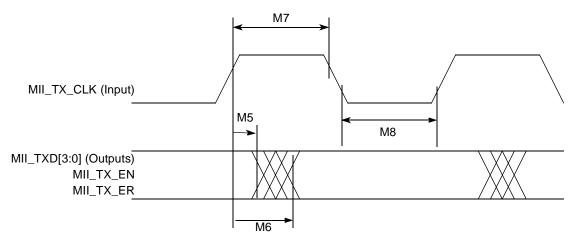


Figure 60. MII Transmit Signal Timing Diagram

15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 27 provides information about the MII async inputs signal timing.

Table 27. MII Async Inputs Signal Timing

Num	Characteristic	Min	Max	Unit
M9	M9 MII_CRS, MII_COL minimum pulse width		1	MII_TX_CLK period

Figure 61 shows the MII asynchronous inputs signal timing diagram.

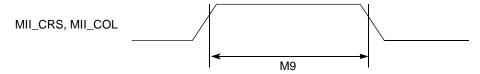


Figure 61. MII Async Inputs Timing Diagram

15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 28 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	m Characteristic		Max	Unit
M10	M10 MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)		_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 62 shows the MII serial management channel timing diagram.

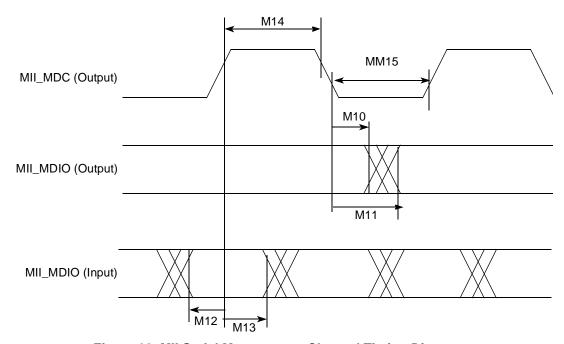


Figure 62. MII Serial Management Channel Timing Diagram

16.1.1 **JEDEC Compliant Pinout**

Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface. For additional information, see the MPC866 PowerQUICCTM Family Reference Manual.

NOTE: This is the top view of the device.

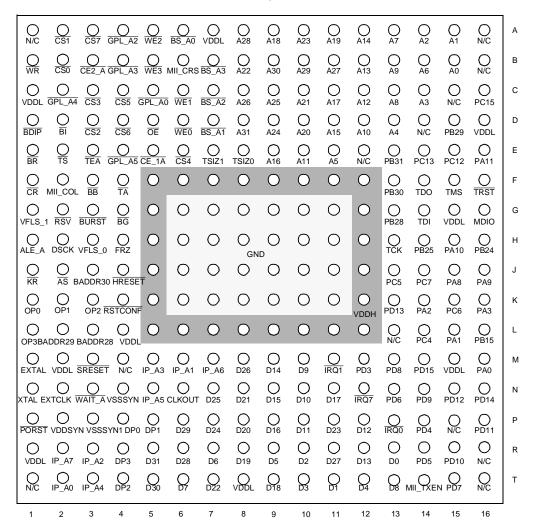


Figure 63. Pinout of PBGA Package—JEDEC Standard

Mechanical Data and Ordering Information

Table 30 contains a list of the MPC852T input and output signals and shows multiplexing and pin assignments.

Table 30. Pin Assignments—JEDEC Standard

Name	Pin Number	Туре
A[0:31]	B15, A15, A14, C14, D13, E11, B14, A13, C13, B13, D12, E10, C12, B12, A12, D11, E9, C11, A9, A11, D10, C10, B8, A10, D9, C9, C8, B11, A8, B10, B9, D8	Bidirectional Three-state (3.3 V only)
TSIZ0, REG	E8	Bidirectional Three-state (3.3 V only)
TSIZ1	E7	Bidirectional Three-state (3.3 V only)
RD/WR	B1	Bidirectional Three-state (3.3 V only)
BURST	G3	Bidirectional Three-state (3.3 V only)
BDIP, GPL_B5	D1	Output
TS	E2	Bidirectional Active Pull-up (3.3 V only)
TA	F4	Bidirectional Active Pull-up (3.3 V only)
TEA	E3	Open-drain
BI	D2	Bidirectional Active Pull-up (3.3 V only)
IRQ2 RSV	G2	Bidirectional Three-state (3.3 V only)
ĪRQ4, KR, RETRY, SPKROUT	J1	Bidirectional Three-state (3.3 V only)
CR, ĪRQ3	F1	Input (3.3 V only)
D[0:31]	R13, T11, R10, T10, T12, R9, R7, T6, T13, M10, N10, P10, P12, R12, M9, N9, P9, N11, T9, R8, P8, N8, T7, P11, P7, N7, M8, R11, R6, P6, T5, R5	Bidirectional Three-state (3.3 V only)
DP0, ĪRQ3	P4	Bidirectional Three-state (3.3 V only)
DP1, ĪRQ4	P5	Bidirectional Three-state (3.3 V only)
DP2, IRQ5	T4	Bidirectional Three-state (3.3 V only)
DP3, ĪRQ6	R4	Bidirectional Three-state (3.3 V only)
BR	E1	Bidirectional (3.3 V only)
BG	G4	Bidirectional (3.3 V only)
BB	F3	Bidirectional Active pull-up (3.3 V only)

Mechanical Data and Ordering Information

Table 30. Pin Assignments—JEDEC Standard (continued)

Name	Pin Number	Туре
PC4, CD4	L14	Bidirectional
		(5-V tolerant)
PD15, MII_RXD3	M14	Bidirectional
		(5-V tolerant)
PD14, MII_RXD2	N16	Bidirectional
		(5-V tolerant)
PD13, MII_RXD1	K13	Bidirectional
		(5-V tolerant)
PD12, MII_MDC	N15	Bidirectional
		(5-V tolerant)
PD11, RXD3, MII_TX_ER	P16	Bidirectional
		(5-V tolerant)
PD10, TXD3, MII_RXD0	R15	Bidirectional
		(5-V tolerant)
PD9, RXD4, MII_TXD0	N14	Bidirectional
		(5-V tolerant)
PD8, TXD4, MII_RX_CLK	M13	Bidirectional
		(5-V tolerant)
PD7, RTS3, MII_RX_ER	T15	Bidirectional
		(5-V tolerant)
PD6, RTS4, MII_RX_DV	N13	Bidirectional
		(5-V tolerant)
PD5, MII_TXD3	R14	Bidirectional
		(5-V tolerant)
PD4, MII_TXD2	P14	Bidirectional
		(5-V tolerant)
PD3, MII_TXD1	M12	Bidirectional
		(5-V tolerant)
TMS	F15	Input
		(5-V tolerant)
TDI, DSDI	G14	Input
		(5-V tolerant)
TCK, DSCK	H13	Input
		(5-V tolerant)
TRST	F16	Input
		(5-V tolerant)
TDO, DSDO	F14	Output
		(5-V tolerant)
MII_CRS	B6	Input

Table 30. Pin Assignments—JEDEC Standard (continued)

Name	Pin Number	Туре
MII_MDIO	G16	Bidirectional (5-V tolerant)
MII_TXEN	T14	Output (5-V tolerant)
MII_COL	F2	Input
V _{SSSYN}	N4	PLL analog GND
V _{SSSYN1}	P3	PLL analog GND
V _{DDSYN}	P2	PLL analog V _{DD}
GND	G6, G7, G8, G9, G10, G11, H6, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, J11, K6, K7, K8, K9, K10, K11	Power
V_{DDL}	A7, C1, D16, G15, L4, M2, R1, M15, T8	Power
V_{DDH}	F5, F6, F7, F8, F9, F10, F11, F12, G5, G12, H5, H12, J5, J12, K5, K12, L5, L6, L7, L8, L9, L10, L11, L12	Power
N/C	A1, A16, B16, C15, D14, E12, L13, M4, P15, R16, T1, T16	No connect

Table 31 contains a list of the MPC852T input and output signals and shows multiplexing and pin assignments.

Table 31. Pin Assignments—Non-JEDEC

Name	Pin Number	Туре
A[0:31]	C16, B16, B15, D15, E14, F12, C15, B14, D14, C14, E13, F11, D13, C13, B13, E12, F10, D12, B10, B12, E11, D11, C9, B11, E10, D10, D9, C12, B9, C11, C10, E9	Bidirectional Three-state (3.3 V only)
TSIZ0, REG	F9	Bidirectional Three-state (3.3 V only)
TSIZ1	F8	Bidirectional Three-state (3.3 V only)
RD/WR	C2	Bidirectional Three-state (3.3 V only)
BURST	H4	Bidirectional Three-state (3.3 V only)
BDIP, GPL_B5	E2	Output
TS	F3	Bidirectional Active pull-up (3.3 V only)
TA	G5	Bidirectional Active pull-up (3.3 V only)
TEA	F4	Open-drain
BI	E3	Bidirectional Active pull-up (3.3 V only)
ĪRQ2, RSV	НЗ	Bidirectional Three-state (3.3 V only)
IRQ4, KR RETRY, SPKROUT	K2	Bidirectional Three-state (3.3 V only)
CR, IRQ3	G2	Input (3.3 V only)
D[0:31]	T14, U12, T11, U11, U13, T10, T8, U7, U14, N11, P11, R11, R13, T13, N10, P10, R10, P12, U10, T9, R9, P9, U8, R12, R8, P8, N9, T12, T7, R7, U6, T6	Bidirectional Three-state (3.3 V only)
DP0, ĪRQ3	R5	Bidirectional Three-state (3.3 V only)
DP1, ĪRQ4	R6	Bidirectional Three-state (3.3 V only)
DP2, IRQ5	U5	Bidirectional Three-state (3.3 V only)
DP3, IRQ6	T5	Bidirectional Three-state (3.3 V only)
BR	F2	Bidirectional (3.3 V only)
BG	H5	Bidirectional (3.3 V only)

Table 31. Pin Assignments—Non-JEDEC (continued)

Name	Pin Number	Туре
IP_A1	N7	Input (3.3 V only)
IP_A2, IOIS16_A	Т4	Input (3.3 V only)
IP_A3	N6	Input (3.3 V only)
IP_A4	U4	Input (3.3 V only)
IP_A5	P6	Input (3.3 V only)
IP_A6	N8	Input (3.3 V only)
IP_A7	Т3	Input (3.3 V only)
DSCK	J3	Bidirectional Three-state (3.3 V only)
IWP[0:1], VFLS[0:1]	J4, H2	Bidirectional (3.3 V only)
OP0	L2	Bidirectional (3.3 V only)
OP1	L3	Output
OP2, MODCK1, STS	L4	Bidirectional (3.3 V only)
OP3, MODCK2, DSDO	M2	Bidirectional (3.3 V only)
BADDR[28:29]	M4, M3	Output
BADDR30, REG	K4	Output
ĀS	К3	Input (3.3 V only)
PA11, RXD3	F17	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA10, TXD3	J16	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA9, RXD4	K17	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA8, TXD4	K16	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA3, CLK5, BRGO3, TIN3	L17	Bidirectional (5-V tolerant)
PA2, CLK6, TOUT3	L15	Bidirectional (5-V tolerant)
PA1, CLK7, BRGO4, TIN4	M16	Bidirectional (5-V tolerant)
PA0, CLK8, TOUT4	N17	Bidirectional (5-V tolerant)

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. IEEE 1149.1 and 802.3 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004, 2007. All rights reserved.

Document Number: MPC852TEC

Rev. 4 09/2007

