
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc852tcvr100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- Two baud rate generators
 - Independent (can be connected to any SCC3/4 or SMC1)
 - Allows changes during operation
 - Autobaud support option
- Two SCCs (serial communication controllers)
 - Ethernet/IEEE 802.3[®] standard optional on SCC3 and SCC4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Universal asynchronous receiver transmitter (UART)
 - Totally transparent (bit streams)
 - Totally transparent (frame-based with optional cyclic redundancy check (CRC))
- One SMC (serial management channel)
 - UART
- One SPI (serial peripheral interface)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one independent PCMCIA socket; 8-memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a break point internally
- Normal high and normal low power modes to conserve power
- 1.8 V core and 3.3-V I/O operation with 5-V TTL compatibility. Refer to Table 5 for a listing of the 5-V tolerant pins.

Figure 1 shows the MPC852T block diagram.

Power Dissipation

5 **Power Dissipation**

Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.

Die Revision	Bus Mode	Frequency (MHz)	Typical ¹	Maximum ²	Unit
		50	110	140	mW
	1:1	66	150	180	mW
0		66	140	160	mW
	2:1	80	170	200	mW
	2.1	100	210	250	mW

Table 4. Power Dissipation (P_D)

¹ Typical power dissipation is measured at 1.9 V.

 2 $\,$ Maximum power dissipation at V_{DDL} and V_{DDSYN} is at 1.9 V. and V_{DDH} is at 3.465 V.

NOTE

Values in Table 4 represent V_{DDL} -based power dissipation, and do not include I/O power dissipation over V_{DDH} . I/O power dissipation varies widely by application that buffer current can cause, depending on external circuitry.

The V_{DDSYN} power dissipation is negligible.

6 DC Characteristics

Table 5 provides the DC electrical characteristics for the MPC852T.

 Table 5. DC Electrical Specifications

Characteristic	Symbol	Min	Мах	Unit
Operating voltage	V _{DDH}	3.135	3.465	V
	V _{DDL}	1.7	1.9	V
	V _{DDSYN}	1.7	1.9	V
	Difference between V _{DDL} to V _{DDSYN}	—	100	mV
Input high voltage (all inputs except PA[0:3], PA[8:11], PB15, PB[24:25]; PB[28:31], PC[4:7], PC[12:13], PC15, PD[3:15], TDI, TDO, TCK, TRST, TMS, MII_TXEN, MII_MDIO) ¹	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
EXTAL, EXTCLK input high voltage	V _{IHC}	$0.7 imes V_{DDH}$	V _{DDH}	V

NP

The MBMR[GPLB4DIS], PAPAR, PADIR, PBPAR, PBDIR, PCPAR, and PCDIR should be configured with the mandatory value in Table 6 in the boot code after the reset deasserts.

Register/Configuration	Field	Value (Binary)
HRCW (Hardware reset configuration word)	HRCW[DBGC]	X1
SIUMCR (SIU module configuration register)	SIUMCR[DBGC]	X1
MBMR (Machine B mode register)	MBMR[GPLB4DIS}	0
PAPAR (Port A pin assignment register)	PAPAR[4-7] PAPAR[12-15]	0
PADIR (Port A data direction register)	PADIR[4–7] PADIR[12–15]	1
PBPAR (Port B pin assignment register)	PBPAR[14] PBPAR[16–23] PBPAR[26–27]	0
PBDIR (Port B data direction register)	PBDIR[14] PBDIR[16–23] PBDIR[26–27]	1
PCPAR (Port C pin assignment register)	PCPAR[8–11] PCDIR[14]	0
PCDIR (Port C data direction register)	PCDIR[8–11] PCDIR[14]	1

Table 6. Mandatory	v Reset	Configuration	of MPC852T
	y neset	ooninguration	01 101 00321

11 Layout Practices

Each V_{DD} pin on the MPC852T should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 µF bypass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as V_{DD} and GND planes should be used.

All output pins on the MPC852T have fast rise and fall times. Printed-circuit (PC) trace interconnection length should be minimized to minimize undershoot and reflections that these fast output switching times cause. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances that the PC traces cause. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads, because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that are inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to the *MPC866 PowerQUICC*TM *Family Reference Manual*, Section 14.4.3, "Clock Synthesizer Power (V_{DDSYN} , V_{SSSYN} , V_{SSSYN1})."

Num	Characteristic	33	MHz	40 1	MHz	50	MHz	66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Onit
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 × B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 6.00)	6.00	_	6.00	_	6.00	—	6.00	—	ns
B16a	TEA, $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 4.5)	4.50	_	4.50	_	4.50	_	4.50	_	ns
B16b	$\overline{BB}, \overline{BG}, \overline{BR}, \text{ valid to CLKOUT (setup time)}$ ³ (4MIN = 0.00 × B1 +.000)	4.00	_	4.00	—	4.00	—	4.00	—	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = $0.00 \times B1 + 1.00^4$)	1.00	_	1.00	_	1.00	_	2.00	_	ns
B17a	CLKOUT to \overline{KR} , \overline{RETRY} , \overline{CR} valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	_	2.00		2.00	—	2.00	_	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁵ (MIN = $0.00 \times B1 + 6.00$)	6.00	_	6.00		6.00	—	6.00	—	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁵ (MIN = $0.00 \times B1 + 1.00^{6}$)	1.00	_	1.00	_	1.00	—	2.00	_	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) ⁷ (MIN = $0.00 \times B1 + 4.00$)	4.00	_	4.00	_	4.00	—	4.00	—	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) ⁷ (MIN = $0.00 \times B1 + 2.00$)	2.00	_	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 × B1 + 8.00)	—	8.00	_	8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = $0.25 \times B1 - 2.00$)	5.60		4.30		3.00		1.80	_	ns

Table 9. Bus Operation Timings (continued)

Nivues	Characteristic	33 I	ИНz	40 M	MHz 50 MHz			66 I	l lm:t	
Num		Min	Мах	Min	Мах	Min	Max	Min	Max	Unit
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 and CSNT = 0 (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B29c	$\label{eq:constraint} \hline \hline \hline CS \ negated to \ D(0:31), \ DP(0:3) \ High-Z \\ GPCM \ write \ access, \ TRLX = 0, \ CSNT = 1, \\ ACS = 10, \ or \ ACS = 11 \ EBDF = 0 \\ (MIN = 0.50 \times B1 - 2.00) \\ \hline \hline$	13.20	_	10.50	_	8.00	_	5.60	_	ns
B29d	$ \frac{\overline{WE}(0:3)/BS_B[0:3] \text{ negated to } D(0:31), \\ DP(0:3) \text{ High-Z GPCM write access, TRLX} \\ = 1, CSNT = 1, EBDF = 0 \\ (MIN = 1.50 \times B1 - 2.00) $	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29e	\overline{CS} negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 × B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29f	$\label{eq:weighted} \hline \hline WE(0:3/BS_B[0:3]) \ \text{negated to } D(0:31), \\ DP(0:3) \ \text{High Z GPCM write access}, \\ TRLX = 0, \ CSNT = 1, \ EBDF = 1 \\ (MIN = 0.375 \times B1 - 6.30)^8 \\ \hline \hline \hline \\ \hline \end{matrix}$	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29g	$\frac{\overline{\text{CS}} \text{ negated to D}(0:31), \text{ DP}(0:3) \text{ High-Z}}{\text{GPCM write access, TRLX = 0, CSNT = 1}}$ $\text{ACS = 10 \text{ or ACS = 11, EBDF = 1}}$ $(\text{MIN = 0.375 \times \text{B1} - 6.30)^8}$	5.00	_	3.00	_	1.10	—	0.00	_	ns
B29h	$\label{eq:weighted} \hline \hline WE(0:3)/BS_B[0:3] \mbox{ negated to } D(0:31), \\ DP(0:3) \mbox{ High Z GPCM write access,} \\ TRLX = 1, \mbox{ CSNT } = 1, \mbox{ EBDF } = 1 \\ (MIN = 0.375 \times B1 - 3.30) \\ \hline \hline \hline \end{tabular}$	38.40	_	31.10	_	24.20	_	17.50	_	ns
B29i	$\label{eq:cs} \hline \frac{\overline{\text{CS}}}{\text{Regated to D}(0:31), \text{DP}(0:3) \text{ High-Z}} \\ \text{GPCM write access, TRLX = 1, CSNT = 1,} \\ \text{ACS = 10 or ACS = 11, EBDF = 1} \\ (\text{MIN = } 0.375 \times \text{B1} - 3.30) \\ \hline \end{array}$	38.40	_	31.10	_	24.20	_	17.50	_	ns
B30	\overline{CS} , \overline{WE} (0:3)/BS_B[0:3] negated to A(0:31), BADDR(28:30) Invalid GPCM write access ⁹ (MIN = 0.25 × B1 – 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B30a	$eq:weighted_$	13.20		10.50		8.00		5.60		ns

Table 9. Bus Operation Timings (continued)

Figure 4 is the control timing diagram.

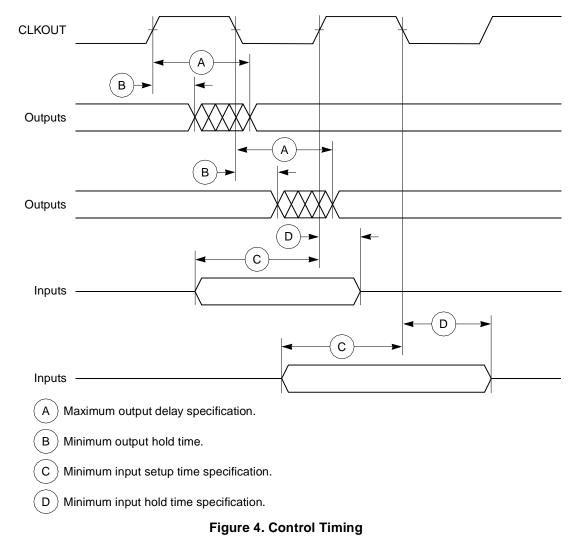


Figure 5 provides the timing for the external clock.

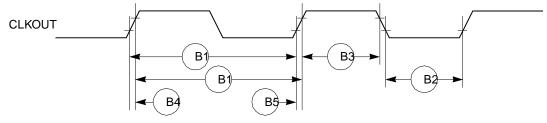


Figure 5. External Clock Timing

Figure 8 provides the timing for the synchronous input signals.

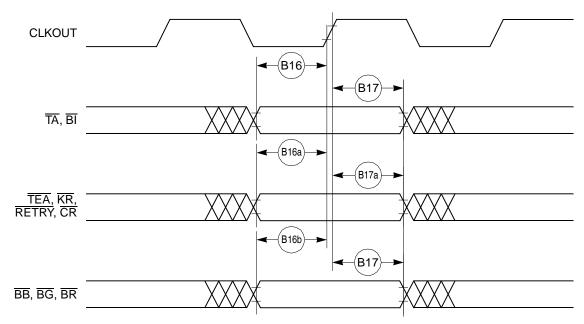


Figure 8. Synchronous Input Signals Timing

Figure 9 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

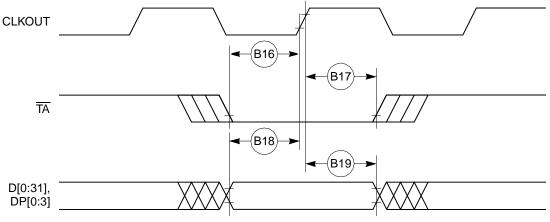
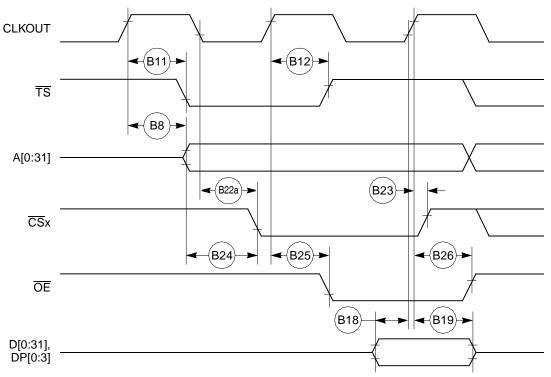
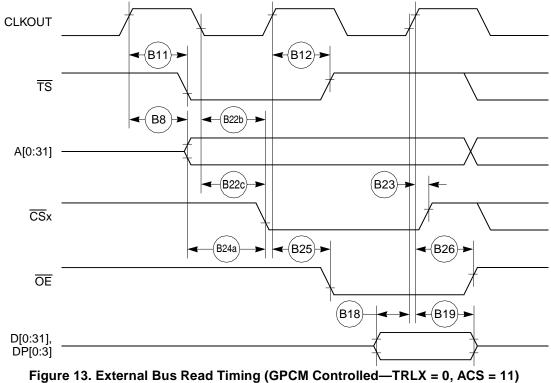




Figure 9. Input Data Timing in Normal Case

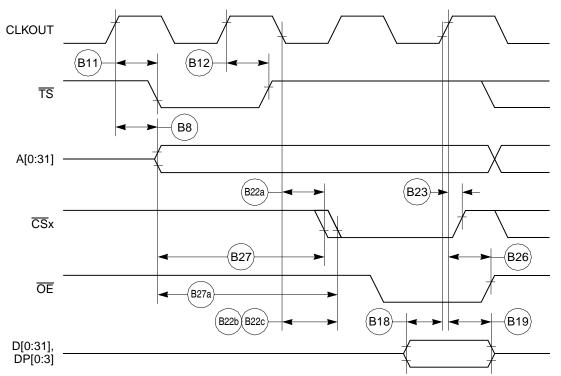


Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Table 10 provides interrupt timing for the MPC852T.

Table 10. Interrupt Timing

Num	Characteristic ¹	All Freq	Unit	
Nulli	Gharacteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
141	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$		_

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and need not be asserted or negated with reference to the CLKOUT. The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and have no direct relation with the total system interrupt latency that the MPC852T is able to support.

Figure 24 provides the interrupt detection timing for the external level-sensitive lines.

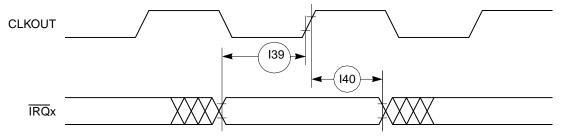


Figure 24. Interrupt Detection Timing for External Level Sensitive Lines

Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.

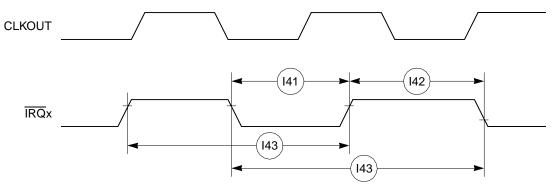


Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines

Table 14 shows the reset timing for the MPC852T.

Table 14. Reset Timing

Num	Characteristic	33	MHz	40 M	ИНz	50 N	MHz	66 MHz		Unit
NUM	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
J82	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	_	20.00	—	20.00	—	20.00	—	20.00	ns
J83	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	_	20.00	—	20.00	—	20.00	_	20.00	ns
J84	$\overrightarrow{RSTCONF} \text{ pulse width (MIN = 17.00 \times B1)}$	515.20		425.00	_	340.00	_	257.60	_	ns
J85	_	—		—	_	—	_	—	_	—
J86	Configuration data to HRESET rising edge set up time (MIN = $15.00 \times B1 + 50.00$)	504.50	—	425.00	_	350.00	_	277.30	_	ns
J87	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge set up time (MIN = 0.00 × B1 + 350.00)	350.00	—	350.00	_	350.00	—	350.00	_	ns
J88	Configuration data hold time after $\overrightarrow{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	—	0.00	_	0.00	_	0.00	—	ns
J89	Configuration data hold time after HRESET negation (MIN = $0.00 \times B1 + 0.00$)	0.00	—	0.00	_	0.00	—	0.00	_	ns
J90	HRESET and RSTCONF asserted to data out drive (MAX = $0.00 \times B1 + 25.00$)	_	25.00	-	25.00	-	25.00	—	25.00	ns
J91	RSTCONF negated to data out high impedance. (MAX = $0.00 \times B1 + 25.00$)	_	25.00	—	25.00	—	25.00	_	25.00	ns
J92	CLKOUT of last rising edge before chip three-states $\overline{\text{HRESET}}$ to data out high impedance. (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	_	25.00	ns
J93	DSDI, DSCK set up (MIN = $3.00 \times B1$)	90.90		75.00	_	60.00	_	45.50	_	ns
J94	DSDI, DSCK hold time (MIN = $0.00 \times B1 + 0.00$)	0.00	—	0.00	_	0.00	_	0.00	_	ns
J95	$\begin{tabular}{l} \hline \hline SRESET negated to CLKOUT rising edge \\ for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00		160.00	_	121.20		ns

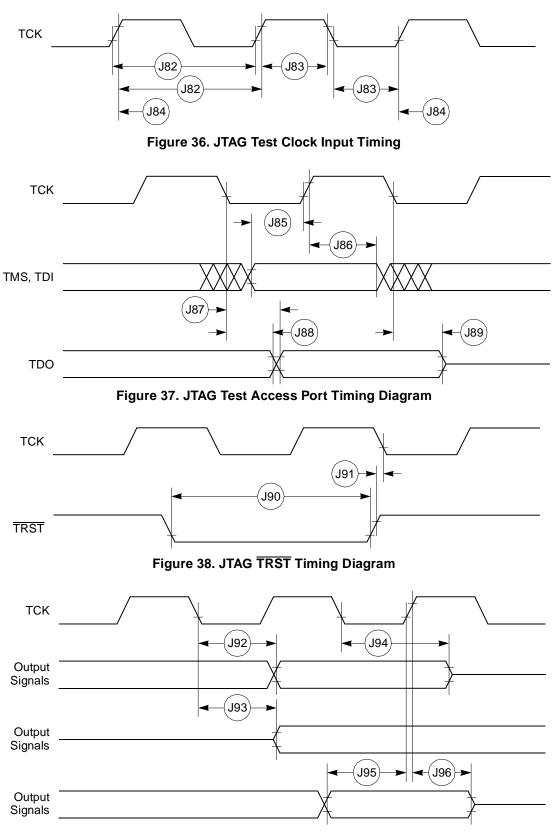


Figure 39. Boundary Scan (JTAG) Timing Diagram

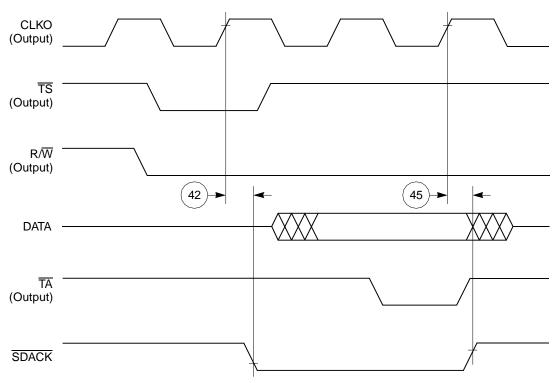


Figure 44. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

14.3 Baud Rate Generator AC Electrical Specifications

Table 18 provides the baud rate generator timings as shown in Figure 45.

Table 18	. Baud	Rate	Generator	Timing
----------	--------	------	-----------	--------

Num	Characteristic	All Freq	Unit	
Num	Unardetensite	Min	Мах	Om
50	BRGO rise and fall time	—	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

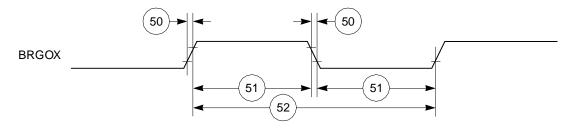


Figure 45. Baud Rate Generator Timing Diagram

CPM Electrical Characteristics

14.4 Timer AC Electrical Specifications

Table 19 provides the general-purpose timer timings as shown in Figure 46.

Table 19. Timer Timing

Num	Characteristic	All Freq	Unit	
	Cildiacteristic	Min	Мах	Unit
61	TIN/TGATE rise and fall time	10	_	ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

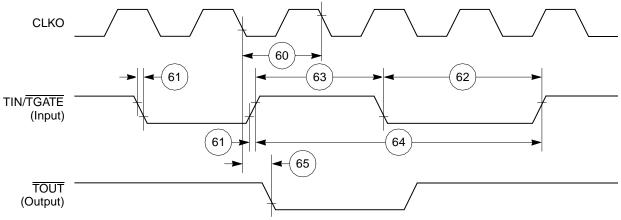


Figure 46. CPM General-Purpose Timers Timing Diagram

14.5 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20	. NMSI	External	Clock	Timing
----------	--------	----------	-------	--------

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Мах	Onit
100	RCLK3 and TCLK3 width high ¹	1/SYNCCLK	_	ns
101	RCLK3 and TCLK3 width low	1/SYNCCLK + 5	_	ns
102	RCLK3 and TCLK3 rise/fall time	—	15.00	ns
103	TXD3 active delay (from TCLK3 falling edge)	0.00	50.00	ns
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	50.00	ns
105	CTS3 setup time to TCLK3 rising edge	5.00	—	ns
106	RXD3 setup time to RCLK3 rising edge	5.00	_	ns

Table 20. NMSI External Clock Timing (continued)

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Мах	onit
107	RXD3 hold time from RCLK3 rising edge ²	5.00	_	ns
108	CD3 setup Time to RCLK3 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK3 and SyncCLK/TCLK3 must be greater than or equal to 2.25/1.

² Also applies to \overline{CD} and \overline{CTS} hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Frequencies		Unit
Nulli		Min	Мах	onit
100	RCLK3 and TCLK3 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK3 and TCLK3 rise/fall time	_	—	ns
103	TXD3 active delay (from TCLK3 falling edge)	0.00	30.00	ns
104	RTS3 active/inactive delay (from TCLK3 falling edge)	0.00	30.00	ns
105	CTS3 setup time to TCLK3 rising edge	40.00	—	ns
106	RXD3 setup time to RCLK3 rising edge	40.00	—	ns
107	RXD3 hold time from RCLK3 rising edge ²	0.00	—	ns
108	CD3 setup time to RCLK3 rising edge	40.00	—	ns

¹ The ratios SyncCLK/RCLK3 and SyncCLK/TCLK3 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

CPM Electrical Characteristics

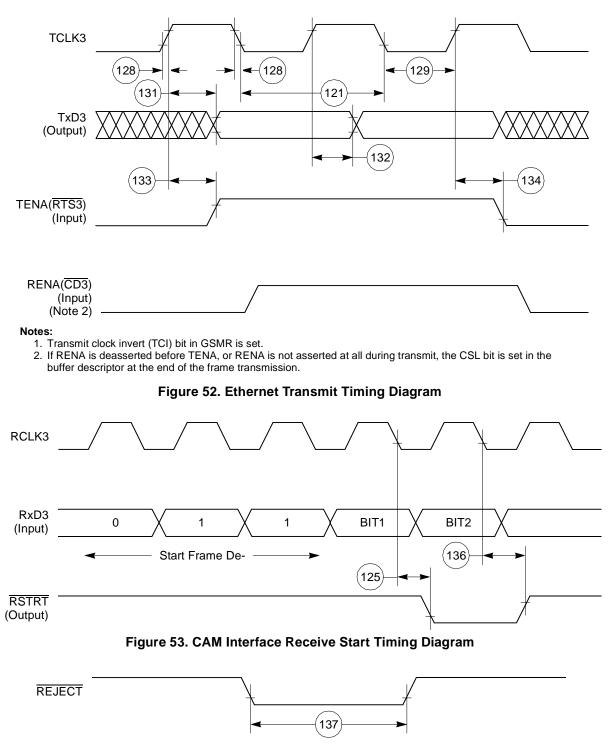


Figure 54. CAM Interface REJECT Timing Diagram

Table 31 contains a list of the MPC852T input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	C16, B16, B15, D15, E14, F12, C15, B14, D14, C14, E13, F11, D13, C13, B13, E12, F10, D12, B10, B12, E11, D11, C9, B11, E10, D10, D9, C12, B9, C11, C10, E9	Bidirectional Three-state (3.3 V only)
TSIZ0, REG	F9	Bidirectional Three-state (3.3 V only)
TSIZ1	F8	Bidirectional Three-state (3.3 V only)
RD/WR	C2	Bidirectional Three-state (3.3 V only)
BURST	H4	Bidirectional Three-state (3.3 V only)
BDIP, GPL_B5	E2	Output
TS	F3	Bidirectional Active pull-up (3.3 V only)
TA	G5	Bidirectional Active pull-up (3.3 V only)
TEA	F4	Open-drain
BI	E3	Bidirectional Active pull-up (3.3 V only)
IRQ2, RSV	НЗ	Bidirectional Three-state (3.3 V only)
IRQ4, KR RETRY, SPKROUT	К2	Bidirectional Three-state (3.3 V only)
CR, IRQ3	G2	Input (3.3 V only)
D[0:31]	T14, U12, T11, U11, U13, T10, T8, U7, U14, N11, P11, R11, R13, T13, N10, P10, R10, P12, U10, T9, R9, P9, U8, R12, R8, P8, N9, T12, T7, R7, U6, T6	Bidirectional Three-state (3.3 V only)
DP0, IRQ3	R5	Bidirectional Three-state (3.3 V only)
DP1, IRQ4	R6	Bidirectional Three-state (3.3 V only)
DP2, IRQ5	U5	Bidirectional Three-state (3.3 V only)
DP3, IRQ6	T5	Bidirectional Three-state (3.3 V only)
BR	F2	Bidirectional (3.3 V only)
BG	H5	Bidirectional (3.3 V only)

Name	Pin Number	Туре
IP_A1	N7	Input (3.3 V only)
IP_A2, IOIS16_A	Т4	Input (3.3 V only)
IP_A3	N6	Input (3.3 V only)
IP_A4	U4	Input (3.3 V only)
IP_A5	P6	Input (3.3 V only)
IP_A6	N8	Input (3.3 V only)
IP_A7	тз	Input (3.3 V only)
DSCK	J3	Bidirectional Three-state (3.3 V only)
IWP[0:1], VFLS[0:1]	J4, H2	Bidirectional (3.3 V only)
OP0	L2	Bidirectional (3.3 V only)
OP1	L3	Output
OP2, MODCK1, STS	L4	Bidirectional (3.3 V only)
OP3, MODCK2, DSDO	M2	Bidirectional (3.3 V only)
BADDR[28:29]	M4, M3	Output
BADDR30, REG	К4	Output
ĀS	КЗ	Input (3.3 V only)
PA11, RXD3	F17	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA10, TXD3	J16	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA9, RXD4	K17	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA8, TXD4	K16	Bidirectional (Optional: Open-drain) (5-V tolerant)
PA3, CLK5, BRGO3, TIN3	L17	Bidirectional (5-V tolerant)
PA2, CLK6, TOUT3	L15	Bidirectional (5-V tolerant)
PA1, CLK7, BRGO4, TIN4	M16	Bidirectional (5-V tolerant)
PA0, CLK8, TOUT4	N17	Bidirectional (5-V tolerant)

Table 31. Pin Assignments—Non-JEDEC (continued)

Name	Pin Number	Туре
PB31, SPISEL	F14	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB30, SPICLK	G14	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB29, SPIMOSI	E16	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB28, SPIMISO, BRGO4	H14	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB25, SMTXD1	J15	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB24, SMRXD1	J17	Bidirectional (Optional: Open-drain) (5-V tolerant)
PB15, BRGO3	M17	Bidirectional (5-V tolerant)
PC15, DREQ0	D17	Bidirectional (5-V tolerant)
PC13, RTS3	F15	Bidirectional (5-V tolerant)
PC12, RTS4	F16	Bidirectional (5-V tolerant)
PC7, <u>CTS3</u>	К15	Bidirectional (5-V tolerant)
PC6, CD3	L16	Bidirectional (5-V tolerant)
PC5, CTS4, SDACK1	К14	Bidirectional (5-V tolerant)
PC4, <u>CD4</u>	M15	Bidirectional (5-V tolerant)
PD15, MII_RXD3	N15	Bidirectional (5-V tolerant)
PD14, MII_RXD2	P17	Bidirectional (5-V tolerant)
PD13, MII_RXD1	L14	Bidirectional (5-V tolerant)

Table 31. Pin Assignments—Non-JEDEC (continued)

Mechanical Data and Ordering Information

Name	Pin Number	Туре
V _{SSSYN1}	R4	PLL analog GND
V _{DDSYN}	R3	PLL analog V _{DD}
GND	H7, H8, H9, H10, H11, H12, J7, J8, J9, J10, J11, J12, K7, K8, K9, K10, K11, K12, L7, L8, L9, L10, L11, L12	Power
V _{DDL}	B8, D2, E17, H16, M5, N3, T2, N16, U9	Power
V _{DDH}	G6, G7, G8, G9, G10, G11, G12, G13, H6, H13, J6, J13, K6, K13, L6, L13, M6, M7, M8, M9, M10, M11, M12, M13	Power
N/C	B2, B17, C17, D16, E15, F13, M14, N5, R16, T17, U2, U17	No connect

Table 31. Pin Assignments—Non-JEDEC (continued)