

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5472zp200	
Supplier Device Package	388-PBGA (27x27)	
Package / Case	388-BBGA	
Mounting Type	Surface Mount	
Operating Temperature	0°C ~ 70°C (TA)	
Oscillator Type	External	
Data Converters	-	
Voltage - Supply (Vcc/Vdd)	1.43V ~ 1.58V	
RAM Size	32K x 8	
EEPROM Size	-	
Program Memory Type	ROMIess	
Program Memory Size	-	
Number of I/O	99	
Peripherals	DMA, PWM, WDT	
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART, USB	
Speed	200MHz	
Core Size	32-Bit Single-Core	
Core Processor	Coldfire V4E	
Product Status	Obsolete	
Details		

Table of Contents

1	Maximum Ratings4	Figure 15.DDR Clock Timing Diagram	18
2	Thermal Characteristics	Figure 16.DDR Write Timing	20
	2.1 Operating Temperatures	Figure 17.DDR Read Timing	21
	2.2 Thermal Resistance	Figure 18.PCI Timing	22
3	DC Electrical Specifications	Figure 19.MII Receive Signal Timing Diagram	23
4	Hardware Design Considerations6	Figure 20.MII Transmit Signal Timing Diagram	
	4.1 PLL Power Filtering	Figure 21.MII Async Inputs Timing Diagram	24
	4.2 Supply Voltage Sequencing and Separation Cautions6	Figure 22.MII Serial Management Channel TIming Diagram.	
	4.3 General USB Layout Guidelines	Figure 23.I ² C Input/Output Timings	26
	4.4 USB Power Filtering	Figure 24.Test Clock Input Timing	27
5	Output Driver Capability and Loading10	Figure 25.Boundary Scan (JTAG) Timing	
6	PLL Timing Specifications	Figure 26.Test Access Port Timing	
7	Reset Timing Specifications	Figure 27.TRST Timing Debug AC Timing Specifications	
8	FlexBus12	Figure 28.Real-Time Trace AC Timing	
	8.1 FlexBus AC Timing Characteristics	Figure 29.BDM Serial Port AC Timing	
9	SDRAM Bus	Figure 30.DSPI Timing	
	9.1 SDR SDRAM AC Timing Characteristics	Figure 31.388-pin BGA Case Outline	31
	9.2 DDR SDRAM AC Timing Characteristics	List of Tables	
	PCI Bus		
11	Fast Ethernet AC Timing Specifications	Table 1. Absolute Maximum Ratings	
	11.1 MII/7-WIRE Interface Timing Specs	Table 2. Operating Temperatures	
	11.2 MII Transmit Signal Timing	Table 3. Thermal Resistance.	
	11.3 MII Async Inputs Signal Timing (CRS, COL)24	Table 4. DC Electrical Specifications.	
	11.4 MII Serial Management Channel Timing (MDIO,MDC).24	Table 5. USB Filter Circuit Values	
	General Timing Specifications	Table 6. I/O Driver Capability	
	I ² C Input/Output Timing Specifications25	Table 7. Clock Timing Specifications	
	JTAG and Boundary Scan Timing	Table 8. MCF547x Divide Ratio Encodings	
	DSPI Electrical Specifications	Table 9. Reset Timing Specifications	
	Timer Module AC Timing Specifications29	Table 10.FlexBus AC Timing Specifications	
	Case Drawing	Table 11.SDR Timing Specifications	
18	Revision History	Table 12.DDR Clock Crossover Specifications	
Lie	st of Figures	Table 14 POL Timing Specifications	
		Table 14.PCI Timing Specifications	
	gure 1.MCF547X Block Diagram	Table 16 MII Transmit Signal Timing	
	gure 2. System PLL V _{DD} Power Filter	Table 15.MII Transmit Signal Timing	
	gure 3. Supply Voltage Sequencing and Separation Cautions . 7	Table 19 Mil Sarial Management Channel Signal Timing	
	gure 4. Preferred VBUS Connections	Table 18.MII Serial Management Channel Signal Timing	
	gure 5. Alternate VBUS Connections	Table 19. General AC Timing Specifications	25
	gure 6.USB V _{DD} Power Filter	Table 20.1 ² C Input Timing Specifications between SCL and SDA	25
	gure 7. USBRBIAS Connection		25
FI	gure 8. Input Clock Timing Diagram	Table 21. I ² C Output Timing Specifications between	0.5
	gure 9. CLKIN, Internal Bus, and Core Clock Ratios	SCL and SDA	
	gure 10.Reset Timing	Table 22 JTAG and Boundary Scan Timing	
	gure 11.FlexBus Read Timing	Table 23 Debug AC Timing Specifications	
	gure 12.FlexBus Write Timing	Table 24.DSPI Modules AC Timing Specifications	
	gure 13.SDR Write Timing	Table 25. Timer Module AC Timing Specifications	29
FI	gure 14.SDR Read Timing		

Maximum Ratings

1 Maximum Ratings

Table 1 lists maximum and minimum ratings for supply and operating voltages and storage temperature. Operating outside of these ranges may cause erratic behavior or damage to the processor.

Table 1. Absolute Maximum Ratings

Rating	Symbol	Value	Units
External (I/O pads) supply voltage (3.3-V power pins)	EV _{DD}	-0.3 to +4.0	V
Internal logic supply voltage	IV _{DD}	-0.5 to +2.0	V
Memory (I/O pads) supply voltage (2.5-V power pins)	SD V _{DD}	-0.3 to +4.0 SDR Memory -0.3 to +2.8 DDR Memory	V
PLL supply voltage	PLL V _{DD}	-0.5 to +2.0	V
Internal logic supply voltage, input voltage level	V _{in}	-0.5 to +3.6	V
Storage temperature range	T _{stg}	-55 to +150	°C

2 Thermal Characteristics

2.1 Operating Temperatures

Table 2 lists junction and ambient operating temperatures.

Table 2. Operating Temperatures

Characteristic	Symbol	Value	Units
Maximum operating junction temperature	T _j	105	°C
Maximum operating ambient temperature	T _{Amax}	<70 ¹	°C
Minimum operating ambient temperature	T _{Amin}	-0	°C

This published maximum operating ambient temperature should be used only as a system design guideline. All device operating parameters are guaranteed only when the junction temperature lies within the specified range.

2.2 Thermal Resistance

Table 3 lists thermal resistance values.

Table 3. Thermal Resistance

Characteristic		Symbol	Value	Unit
324 pin TEPBGA — Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	20-22 ^{1,2}	°CW
388 pin TEPBGA — Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	19 ^{1,2}	°CW

Table 3.	Thermal	Resistance	(continued)	١
I abic o.	HILCHINA	I ICSISIALICC	(COIILIIIACA)	,

Characteristic	Symbol	Value	Unit	
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	16 ^{1,2}	°CW
Junction to board	_	θ_{JB}	11 ³	°CW
Junction to case	_	θJC	7 ⁴	°CW
Junction to top of package	Natural convection	Ψ_{jt}	2 ^{1,5}	°CW

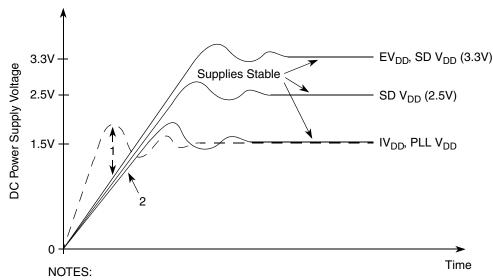
 $[\]theta_{JA}$ and Ψ_{jt} parameters are simulated in accordance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

3 DC Electrical Specifications

Table 4 lists DC electrical operating temperatures. This table is based on an operating voltage of EV_{DD} = 3.3 $V_{DC} \pm 0.3 V_{DC}$ and IV_{DD} of 1.5 \pm 0.07 V_{DC} .

Table 4. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Units
External (I/O pads) operation voltage range	EV _{DD}	3.0	3.6	V
Memory (I/O pads) operation voltage range (DDR Memory)	SD V _{DD}	2.30	2.70	V
Internal logic operation voltage range ¹	IV _{DD}	1.43	1.58	V
PLL Analog operation voltage range ¹	PLL V _{DD}	1.43	1.58	V
USB oscillator operation voltage range	USB_OSV _{DD}	3.0	3.6	V
USB digital logic operation voltage range	USBV _{DD}	3.0	3.6	V
USB PHY operation voltage range	USB_PHYV _{DD}	3.0	3.6	V
USB oscillator analog operation voltage range	USB_OSCAV _{DD}	1.43	1.58	V
USB PLL operation voltage range	USB_PLLV _{DD}	1.43	1.58	V
Input high voltage SSTL 3.3V/2.5V ²	V _{IH}	V _{REF} + 0.3	SD V _{DD} + 0.3	V
Input low voltage SSTL 3.3V/2.5V ²	V _{IL}	V _{SS} - 0.3	V _{REF} - 0.3	V
Input high voltage 3.3V I/O pins	V _{IH}	0.7 x EV _{DD}	EV _{DD} + 0.3	V
Input low voltage 3.3V I/O pins	V _{IL}	V _{SS} - 0.3	0.35 x EV _{DD}	V


² Per JEDEC JESD51-6 with the board horizontal.

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

- IVDD should not exceed EVDD or SD VDD by more than 0.4V at any time, including power-up.
- 2. Recommended that IVDD/PLL VDD should track EVDD/SD VDD up to 0.9V, then separate for completion of ramps.
- 3. Input voltage must not be greater than the supply voltage (EVDD, SD VDD, IVDD, or PLL VDD) by more than 0.5V at any time, including during power-up.
- 4. Use 1 microsecond or slower rise time for all supplies.

Figure 3. Supply Voltage Sequencing and Separation Cautions

The relationship between SD V_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SD V_{DD} (2.5V or 3.3V) and EV_{DD} are specified relative to IV_{DD} .

4.2.1 Power Up Sequence

If $EV_{DD}/SD\ V_{DD}$ are powered up with the IV_{DD} at 0V, the sense circuits in the I/O pads cause all pad output drivers connected to the $EV_{DD}/SD\ V_{DD}$ to be in a high impedance state. There is no limit to how long after $EV_{DD}/SD\ V_{DD}$ powers up before IV_{DD} must power up. IV_{DD} should not lead the EV_{DD} , $SD\ V_{DD}$, or $PLL\ V_{DD}$ by more than 0.4V during power ramp up or there is high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 microsecond or slower rise time for all supplies.
- IV_{DD}/PLL V_{DD} and EV_{DD}/SD V_{DD} should track up to 0.9V, then separate for the completion of ramps with EV_{DD}/SD V_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

4.2.2 Power Down Sequence

If IV_{DD} PLL V_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PLL V_{DD} power down before EV_{DD} or SD V_{DD} must power down. IV_{DD} should not lag EV_{DD} , SD V_{DD} , or PLL V_{DD} going low by more than 0.4V during power down or there is undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop IV_{DD}/PLL V_{DD} to 0V
- 2. Drop EV_{DD}/SD V_{DD} supplies

Hardware Design Considerations

4.3 General USB Layout Guidelines

4.3.1 USB D+ and D- High-Speed Traces

- 1. High speed clock and the USBD+ and USBD- differential pair should be routed first.
- 2. Route USBD+ and USBD- signals on the top layer of the board.
- 3. The trace width and spacing of the USBD+ and USBD- signals should be such that the differential impedance is 90Ω .
- 4. Route traces over continuous planes (power and ground)—they should not pass over any power/ground plane slots or anti-etch. When placing connectors, make sure the ground plane clear-outs around each pin have ground continuity between all pins.
- 5. Maintain the parallelism (skew matched) between USBD+ and USBD-. These traces should be the same overall length.
- 6. Do not route USBD+ and USBD- traces under oscillators or parallel to clock traces and/or data buses. Minimize the lengths of high speed signals that run parallel to the USBD+ and USBD- pair. Maintain a minimum 50mil spacing to clock signals.
- 7. Keep USBD+ and USBD- traces as short as possible.
- 8. Route USBD+, USBD-, and USBVBUS signals with a minimum amount of vias and corners. Use 45° turns.
- 9. Stubs should be avoided as much as possible. If they cannot be avoided, stubs should be no greater than 200mils.

4.3.2 USB VBUS Traces

Connecting the USBVBUS pin directly to the 5V VBUS signal from the USB connector can cause long-term reliability problems in the ESD network of the processor. Therefore, use of an external voltage divider for VBUS is recommended. Figure 4 and Figure 5 depict possible connections for VBUS. Point A, marked in each figure, is where a 5V version of VBUS should connect. Point B, marked in each figure, is where a 3.3V version of VBUS should connect to the USBVBUS pin on the device.

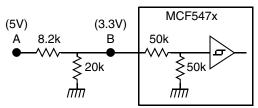


Figure 4. Preferred VBUS Connections

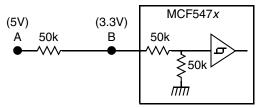


Figure 5. Alternate VBUS Connections

4.3.3 USB Receptacle Connections

It is recommended to connect the shield and the ground pin of the B USB receptacle for upstream ports to the board ground plane. The ground pin of the A USB receptacles for downstream ports should also be connected to the board ground plane, but industry practice varies widely on the connection of the shield of the A USB receptacles to other system grounds. Take precautions for control of ground loops between hosts and self-powered USB devices through the cable shield.

4.4 USB Power Filtering

To minimize noise, an external filter is required for each of the USB power pins. The filter shown in Figure 6 should be connected between the board EV_{DD} or IV_{DD} and each of the USB V_{DD} pins.

- The resistor and capacitors should be placed as close to the dedicated USB V_{DD} pin as possible.
- A separate filter circuit should be included for each USB V_{DD} pin, a total of five circuits.
- All traces should be as low impedance as possible, especially ground pins to the ground plane.
- The filter for USB_PHYVDD to VSS should be connected to the power and ground planes, respectively, not fingers of the planes.
- In addition to keeping the filter components for the USB_PLLVDD as close as practical to the body of the processor as previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise onto the portion of that supply between the filter and the processor.
- The capacitors for C2 in the table below should be rated X5R or better due to temperature performance.

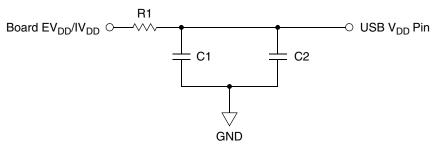


Figure 6. USB V_{DD} Power Filter

NOTE

In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

Table 5 lists the resistor values and supply voltages to be used in the circuit for each of the USB V_{DD} pins.

Table 5. USB Filter Circuit Values

USB V _{DD} Pin	Nominal Voltage	R1 (Ω)	C1 (μF)	C2 (μF)
USBVDD (Bias generator supply)	3.3V	10	10	0.1
USB_PHYVDD (Main transceiver supply)	3.3V	0	10	0.1
USB_PLLVDD (PLL supply)	1.5V	10	1	0.1
USB_OSCVDD (Oscillator supply)	3.3V	0	10	0.1
USB_OSCAVDD (Oscillator analog supply)	1.5V	0	10	0.1

6 PLL Timing Specifications

The specifications in Table 7 are for the CLKIN pin.

Table 7. Clock Timing Specifications

Num	Characteristic	Min	Max	Units
C1	Cycle time	15.0	40	ns
C2	Rise time (20% of Vdd to 80% of vdd)	_	2	ns
C3	Fall time (80% of Vdd to 20% of Vdd)	_	2	ns
C4	Duty cycle (at 50% of Vdd)	40	60	%

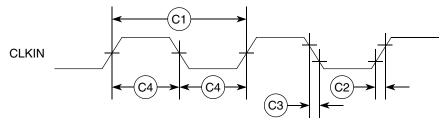


Figure 8. Input Clock Timing Diagram

Table 8 shows the supported PLL encodings.

Table 8. MCF547x Divide Ratio Encodings

AD[12:8] ¹	Clock Ratio	CLKIN—PCI and FlexBus Frequency Range (MHz)	Internal XLB, SDRAM Bus, and PSTCLK Frequency Range (MHz)	Core Frequency Range (MHz)
00011	1:2	41.67–66.66	83.33-133.33	166.66–266.66
00101	1:2	25.0-44.42	50.0-88.83 ²	100.0–177.66
01111	1:4	25.0–33.3	100–133.33	200–266.66

All other values of AD[12:8] are reserved.

Figure 9 correlates CLKIN, internal bus, and core clock frequencies for the 1x-4x multipliers.

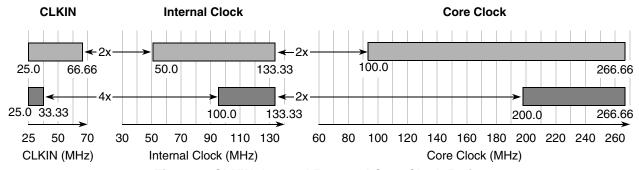


Figure 9. CLKIN, Internal Bus, and Core Clock Ratios

MCF547x ColdFire® Microprocessor, Rev. 4

DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy down to 75 MHz. Check with the memory component specifications to verify.

FlexBus

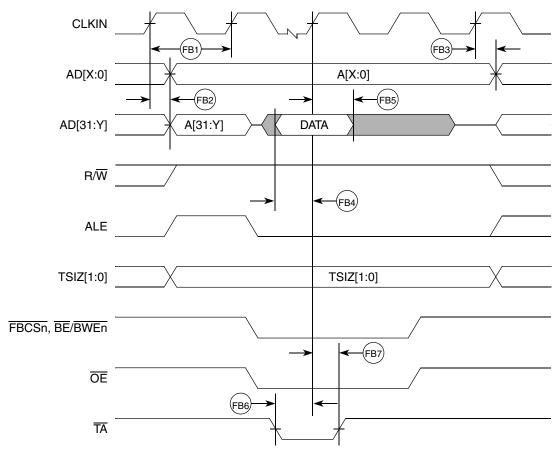


Figure 11. FlexBus Read Timing

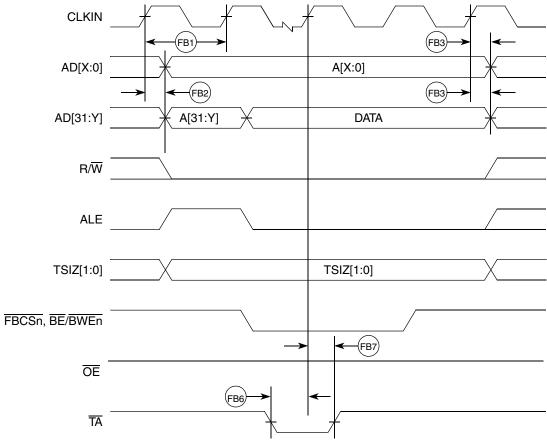


Figure 12. FlexBus Write Timing

9 SDRAM Bus

The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time. The SDRAM controller uses SSTL2 and SSTL3 I/O drivers. Both SSTL drive modes are programmable for Class I or Class II drive strength.

9.1 SDR SDRAM AC Timing Characteristics

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SDR_DQS on read cycles. The MCF547x SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must be supplied to the MCF547x for each data beat of an SDR read. The MCF547x accomplishes this by asserting a signal called SDR_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal and its usage.

SDRAM Bus

Table 11. SDR Timing Specifications

Symbol	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	0	133	Mhz	1
SD1	Clock Period (t _{CK})	7.52	12	ns	2
SD2	Clock Skew (t _{SK})		TBD		
SD3	Pulse Width High (t _{CKH})	0.45	0.55	SDCLK	3
SD4	Pulse Width Low (t _{CKL})	0.45	0.55	SDCLK	4
SD5	Address, CKE, CAS, RAS, WE, BA, CS - Output Valid (t _{CMV})		0.5 × SDCLK + 1.0ns	ns	
SD6	Address, CKE, CAS, RAS, WE, BA, CS - Output Hold (t _{CMH})	2.0		ns	
SD7	SDRDQS Output Valid (t _{DQSOV})		Self timed	ns	5
SD8	SDDQS[3:0] input setup relative to SDCLK (t _{DQSIS})	0.25 × SDCLK	0.40 × SDCLK	ns	6
SD9	SDDQS[3:0] input hold relative to SDCLK (t _{DQSIH})	Does not apply	. 0.5 SDCLK fixe	d width.	7
SD10	Data Input Setup relative to SDCLK (reference only) (t _{DIS})	0.25 × SDCLK		ns	8
SD11	Data Input Hold relative to SDCLK (reference only) (t _{DIH})	1.0		ns	
SD12	Data and Data Mask Output Valid (t _{DV})		0.75 × SDCLK +0.500ns	ns	
SD13	Data and Data Mask Output Hold (t _{DH})	1.5		ns	

¹ The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF547X supports a single external reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at the same frequency as the internal bus clock. Please see the PLL chapter of the MCF547X Reference Manual for more information on setting the SDRAM clock rate.

² SDCLK is one SDRAM clock in (ns).

³ Pulse width high plus pulse width low cannot exceed min and max clock period.

⁴ Pulse width high plus pulse width low cannot exceed min and max clock period.

⁵ SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.

⁶ SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.

The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller.

Because a read cycle in SDR mode uses the DQS circuit within the MCF547X, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec is provided as guidance.

SDRAM Bus

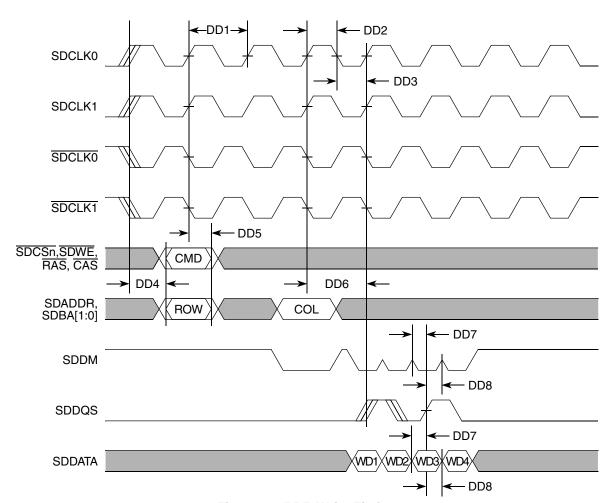


Figure 16. DDR Write Timing

Num	Characteristic	Min	Max	Unit
M1	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
M2	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
МЗ	RXCLK pulse width high	35%	65%	RXCLK period
M4	RXCLK pulse width low	35%	65%	RXCLK period

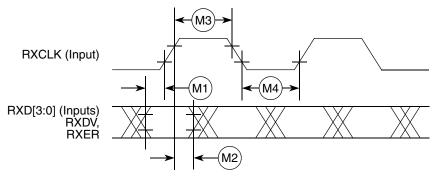


Figure 19. MII Receive Signal Timing Diagram

11.2 MII Transmit Signal Timing

Table 16. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
M5	TXCLK to TXD[3:0], TXEN, TXER invalid	0	_	ns
M6	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns
M7	TXCLK pulse width high	35%	65%	TXCLK period
M8	TXCLK pulse width low	35%	65%	TXCLK period

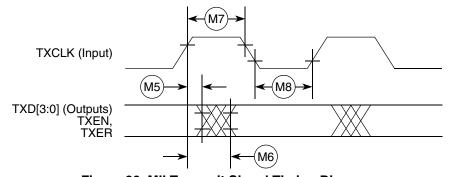


Figure 20. MII Transmit Signal Timing Diagram

Fast Ethernet AC Timing Specifications

11.3 MII Async Inputs Signal Timing (CRS, COL)

Table 17. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
М9	CRS, COL minimum pulse width	1.5		TX_CLK period

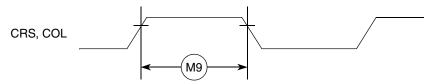


Figure 21. MII Async Inputs Timing Diagram

11.4 MII Serial Management Channel Timing (MDIO, MDC)

Table 18. MII Serial Management Channel Signal Timing

Num	Characteristic	Min	Max	Unit
M10	MDC falling edge to MDIO output invalid (min prop delay)	0	_	ns
M11	MDC falling edge to MDIO output valid (max prop delay)	_	25	ns
M12	MDIO (input) to MDC rising edge setup	10	_	ns
M13	MDIO (input) to MDC rising edge hold	0	_	ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period



Figure 22. MII Serial Management Channel TIming Diagram

24 Freescale Semiconductor

MCF547x ColdFire® Microprocessor, Rev. 4

12 General Timing Specifications

Table 19 lists timing specifications for the GPIO, PSC, DREQ, DACK, and external interrupts.

Table 19. General AC Timing Specifications

Name	Characteristic	Min	Max	Unit
G1	CLKIN high to signal output valid	_	2	PSTCLK
G2	CLKIN high to signal invalid (output hold)	0	_	ns
G3	Signal input pulse width	2	_	PSTCLK

13 I²C Input/Output Timing Specifications

Table 20 lists specifications for the I²C input timing parameters shown in Figure 23.

Table 20. I²C Input Timing Specifications between SCL and SDA

Num	Characteristic	Min	Max	Units
l1	Start condition hold time	2	_	Bus clocks
12	Clock low period	8	_	Bus clocks
13	SCL/SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	mS
14	Data hold time	0	_	ns
15	SCL/SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	mS
16	Clock high time	4	_	Bus clocks
17	Data setup time	0	_	ns
18	Start condition setup time (for repeated start condition only)	2	_	Bus clocks
19	Stop condition setup time	2		Bus clocks

Table 21 lists specifications for the I²C output timing parameters shown in Figure 23.

Table 21. I²C Output Timing Specifications between SCL and SDA

Num	Characteristic	Min	Max	Units
l1 ¹	Start condition hold time	6	_	Bus clocks
I2 ¹	Clock low period	10	_	Bus clocks
13 ²	SCL/SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	_	μS
I4 ¹	Data hold time	7	_	Bus clocks
15 ³	SCL/SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns
I6 ¹	Clock high time	10	_	Bus clocks
I7 ¹	Data setup time	2	_	Bus clocks
I8 ¹	Start condition setup time (for repeated start condition only)	20	_	Bus clocks
I9 ¹	Stop condition setup time	10	_	Bus clocks

JTAG and Boundary Scan Timing

Table 23 lists specifications for the debug AC timing parameters shown in Figure 29.

Table 23. Debug AC Timing Specifications

Num	Characteristic	66 MHz		Units	
Num	Characteristic	Min Max			
D1	PSTDDATA to PSTCLK setup	4.5	_	ns	
D2	PSTCLK to PSTDDATA hold	4.5	_	ns	
D3	DSI-to-DSCLK setup	1	_	PSTCLKs	
D4 ¹	DSCLK-to-DSO hold	4	_	PSTCLKs	
D5	DSCLK cycle time	5	_	PSTCLKs	

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 23.

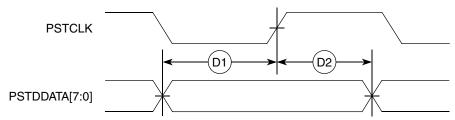


Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 23.

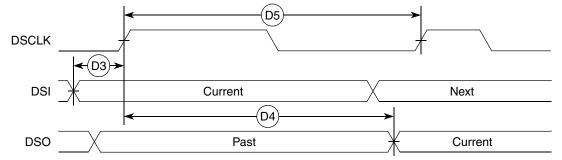


Figure 29. BDM Serial Port AC Timing

15 DSPI Electrical Specifications

Table 24 lists DSPI timings.

Table 24. DSPI Modules AC Timing Specifications

Name	Characteristic	Min	Max	Unit
DS1	DSPI_CS[3:0] to DSPI_CLK	1 × tck	510 × tck	ns
DS2	DSPI_CLK high to DSPI_DOUT valid.	_	12	ns
DS3	DSPI_CLK high to DSPI_DOUT invalid. (Output hold)	2	_	ns
DS4	DSPI_DIN to DSPI_CLK (Input setup)	10	_	ns
DS5	DSPI_DIN to DSPI_CLK (Input hold)	10	_	ns

The values in Table 24 correspond to Figure 30.

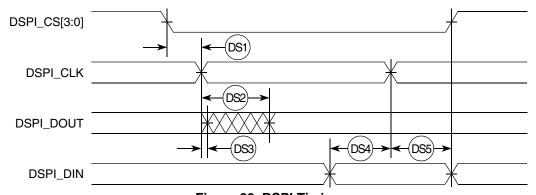


Figure 30. DSPI Timing

16 Timer Module AC Timing Specifications

Table 25 lists timer module AC timings.

Table 25. Timer Module AC Timing Specifications

Name	Characteristic	0–66 MHz		Unit
Nume	Value Characteristic		Max	Oiiii
T1	TIN0 / TIN1 / TIN2 / TIN3 cycle time	3	_	PSTCLK
T2	TIN0 / TIN1 / TIN2 / TIN3 pulse width	1	_	PSTCLK

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

 $\frac{\sqrt{4.}}{\sqrt{}}$ datum a, the seating plane, is determined by the spherical crowns of the solder balls.

5. PACKAGE CODES:

5254 – 2 LAYER SUBSTRATE PACKAGE 5367 – 4 LAYER SUBSTRATE PACKAGE

© FRE	ESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	388 I/O, PBGA		DOCUMENT NO): 98ARS23880W	REV: C
	27 X 27 PKG,		CASE NUMBER	R: 1164–02	25 JAN 2007
	1 MM PITCH (OMPAC	C)	STANDARD: JE	DEC MS-034 AAL-1	

Figure 31. 388-pin BGA Case Outline

MCF547x ColdFire® Microprocessor, Rev. 4

Revision History

18 Revision History

Revision Number	Date	Substantive Changes
2.2	August 29, 2005	Table 7: Changed C1 maximum spec from 33.3 ns to 40 ns.
2.3	August 30, 2005	Table 22: Changed J11 maximum from 15 ns to 20 ns.
2.4	December 14, 2005	Table 10: Changed FB1 maximum from 33.33 ns to 40 ns. Table 14: Changed FB1 maximum from 33.33 ns to 40 ns.
3	February 20, 2007	Table 4: Updated DC electrical specifications, V _{IL} and V _{IH} . Table 6: Changed FlexBus output load from 20pF to 30pF. Added Section 4.3, "General USB Layout Guidelines."
4	December 4, 2007	Figure 2: Changed resistor value from 10W to 10Ω Figure 3: Changed note 1 in from "IVDD should not exceed EVDD, SD VDD or PLL VDD by more than 0.4V" to "IVDD should not exceed EVDD or SD VDD by more than 0.4V" Table 3: Updated thermal information for θ_{JMA} , θ_{JB} , and θ_{JC} Table 4: Added input leakage current spec. Table 6: Added footnote regarding pads having balanced source & sink current. Table 9: Added $\overline{\text{RSTI}}$ pulse duration spec. Added features list, pinout drawing, block diagram, and case outline.

THIS PAGE INTENTIONALLY BLANK

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516

2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French)

www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5475EC

Rev. 4 12/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.

