# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Details                    |                                                                      |
|----------------------------|----------------------------------------------------------------------|
| Product Status             | Not For New Designs                                                  |
| Core Processor             | Coldfire V4E                                                         |
| Core Size                  | 32-Bit Single-Core                                                   |
| Speed                      | 266MHz                                                               |
| Connectivity               | EBI/EMI, Ethernet, I <sup>2</sup> C, SPI, UART/USART, USB            |
| Peripherals                | DMA, PWM, WDT                                                        |
| Number of I/O              | 99                                                                   |
| Program Memory Size        | -                                                                    |
| Program Memory Type        | ROMIess                                                              |
| EEPROM Size                | -                                                                    |
| RAM Size                   | 32K x 8                                                              |
| Voltage - Supply (Vcc/Vdd) | 1.43V ~ 1.58V                                                        |
| Data Converters            | -                                                                    |
| Oscillator Type            | External                                                             |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 388-BBGA                                                             |
| Supplier Device Package    | 388-PBGA (27x27)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5475vr266 |
|                            |                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **Table of Contents**

| 1        |             | mum Ratings4                                          |
|----------|-------------|-------------------------------------------------------|
| 2        | Therr       | mal Characteristics                                   |
|          | 2.1         | Operating Temperatures4                               |
|          | 2.2         | Thermal Resistance4                                   |
| 3        |             | lectrical Specifications                              |
| 4        | Hard        | ware Design Considerations                            |
|          | 4.1         | PLL Power Filtering6                                  |
|          | 4.2         | Supply Voltage Sequencing and Separation Cautions6    |
|          | 4.3         | General USB Layout Guidelines                         |
|          | 4.4         | USB Power Filtering                                   |
| 5        |             | ut Driver Capability and Loading10                    |
| 6        |             | Fiming Specifications                                 |
| 7        |             | t Timing Specifications                               |
| 8        | FlexE       | Bus12                                                 |
|          | 8.1         | FlexBus AC Timing Characteristics                     |
| 9        |             | AM Bus                                                |
|          | 9.1         | SDR SDRAM AC Timing Characteristics15                 |
|          | 9.2         | DDR SDRAM AC Timing Characteristics                   |
| 10       |             | Bus                                                   |
| 11       |             | Ethernet AC Timing Specifications                     |
|          | 11.1        |                                                       |
|          | 11.2        |                                                       |
|          | 11.3        | ······································                |
|          | 11.4        | ······································                |
| 12       |             | ral Timing Specifications                             |
| 13       |             | nput/Output Timing Specifications                     |
| 14       |             | and Boundary Scan Timing                              |
| 15<br>16 |             | Electrical Specifications                             |
| 16       |             | r Module AC Timing Specifications                     |
|          |             | Drawing                                               |
| 18       | Revis       | ion History                                           |
| Lis      | st of       | Figures                                               |
| Fig      | aure 1      | .MCF547X Block Diagram                                |
|          |             | .System PLL V <sub>DD</sub> Power Filter              |
|          |             | Supply Voltage Sequencing and Separation Cautions . 7 |
|          |             | .Preferred VBUS Connections                           |
|          |             | Alternate VBUS Connections                            |
|          |             | .USB V <sub>DD</sub> Power Filter                     |
| Fig      | ,<br>jure 7 | USBRBIAS Connection                                   |
|          |             | .Input Clock Timing Diagram 11                        |
|          |             | CLKIN, Internal Bus, and Core Clock Ratios 11         |
|          |             | 0.Reset Timing 12                                     |
|          |             | 1.FlexBus Read Timing 14                              |
|          |             | 2.FlexBus Write Timing 15                             |
|          |             | 3.SDR Write Timing                                    |
| Fig      | gure 1      | 4.SDR Read Timing 17                                  |

| Figure 15.DDR Clock Timing Diagram                        |
|-----------------------------------------------------------|
| Figure 16.DDR Write Timing 20                             |
| Figure 17.DDR Read Timing 21                              |
| Figure 18.PCI Timing                                      |
| Figure 19.MII Receive Signal Timing Diagram 23            |
| Figure 20.MII Transmit Signal Timing Diagram              |
| Figure 21.MII Async Inputs Timing Diagram 24              |
| Figure 22.MII Serial Management Channel TIming Diagram 24 |
| Figure 23.I <sup>2</sup> C Input/Output Timings           |
| Figure 24.Test Clock Input Timing 27                      |
| Figure 25.Boundary Scan (JTAG) Timing 27                  |
| Figure 26.Test Access Port Timing 27                      |
| Figure 27.TRST Timing Debug AC Timing Specifications 27   |
| Figure 28.Real-Time Trace AC Timing                       |
| Figure 29.BDM Serial Port AC Timing 28                    |
| Figure 30.DSPI Timing                                     |
| Figure 31.388-pin BGA Case Outline                        |
|                                                           |

### **List of Tables**

| Table 1. Absolute Maximum Ratings                               |
|-----------------------------------------------------------------|
| Table 2. Operating Temperatures    4                            |
| Table 3. Thermal Resistance                                     |
| Table 4. DC Electrical Specifications.    5                     |
| Table 5. USB Filter Circuit Values                              |
| Table 6. I/O Driver Capability    10                            |
| Table 7. Clock Timing Specifications.    11                     |
| Table 8. MCF547x Divide Ratio Encodings.    11                  |
| Table 9. Reset Timing Specifications    12                      |
| Table 10.FlexBus AC Timing Specifications.    13                |
| Table 11.SDR Timing Specifications    16                        |
| Table 12.DDR Clock Crossover Specifications    18               |
| Table 13.DDR Timing Specifications    18                        |
| Table 14.PCI Timing Specifications    21                        |
| Table 15.MII Receive Signal Timing.    23                       |
| Table 16.MII Transmit Signal Timing    23                       |
| Table 17.MII Transmit Signal Timing    24                       |
| Table 18.MII Serial Management Channel Signal Timing    24      |
| Table 19.General AC Timing Specifications    25                 |
| Table 20.1 <sup>2</sup> C Input Timing Specifications between   |
| SCL and SDA 25                                                  |
| Table 21. I <sup>2</sup> C Output Timing Specifications between |
| SCL and SDA 25                                                  |
| Table 22.JTAG and Boundary Scan Timing    26                    |
| Table 23.Debug AC Timing Specifications    28                   |
| Table 24.DSPI Modules AC Timing Specifications.    29           |
| Table 25.Timer Module AC Timing Specifications    29            |

N



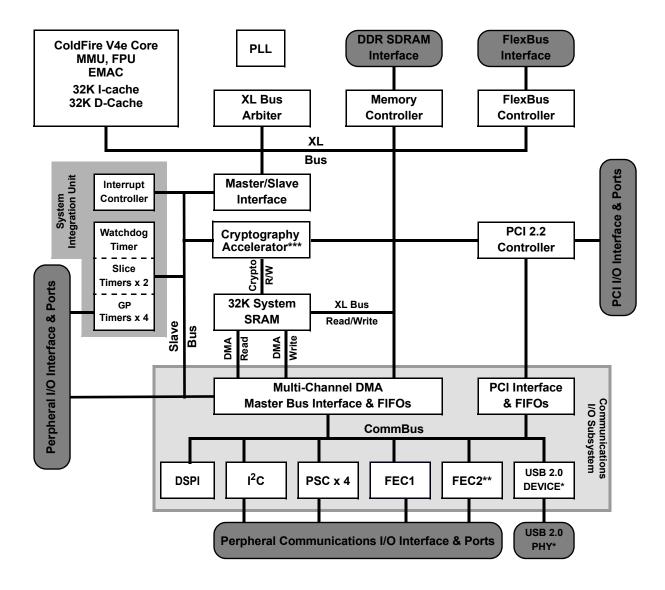
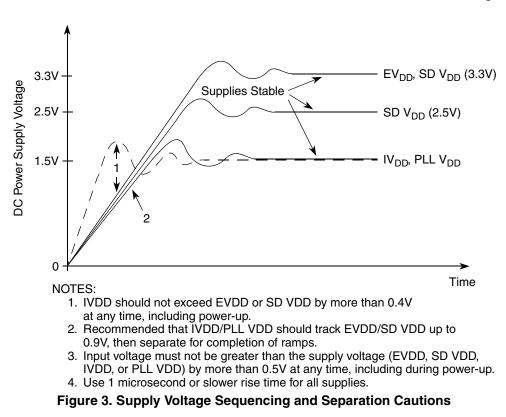




Figure 1. MCF547X Block Diagram



The relationship between SD  $V_{DD}$  and  $EV_{DD}$  is non-critical during power-up and power-down sequences. SD  $V_{DD}$  (2.5V or 3.3V) and  $EV_{DD}$  are specified relative to  $IV_{DD}$ .

### 4.2.1 Power Up Sequence

If  $EV_{DD}/SD V_{DD}$  are powered up with the  $IV_{DD}$  at 0V, the sense circuits in the I/O pads cause all pad output drivers connected to the  $EV_{DD}/SD V_{DD}$  to be in a high impedance state. There is no limit to how long after  $EV_{DD}/SD V_{DD}$  powers up before  $IV_{DD}$  must power up.  $IV_{DD}$  should not lead the  $EV_{DD}$ , SD  $V_{DD}$ , or PLL  $V_{DD}$  by more than 0.4V during power ramp up or there is high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 microsecond or slower rise time for all supplies.
- 2.  $IV_{DD}/PLL V_{DD}$  and  $EV_{DD}/SD V_{DD}$  should track up to 0.9V, then separate for the completion of ramps with  $EV_{DD}/SD V_{DD}$  going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

### 4.2.2 Power Down Sequence

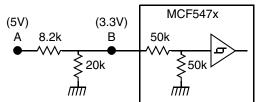
If  $IV_{DD}PLL V_{DD}$  are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after  $IV_{DD}$  and  $PLL V_{DD}$  power down before  $EV_{DD}$  or SD  $V_{DD}$  must power down.  $IV_{DD}$  should not lag  $EV_{DD}$ , SD  $V_{DD}$ , or PLL  $V_{DD}$  going low by more than 0.4V during power down or there is undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop  $IV_{DD}/PLL V_{DD}$  to 0V
- 2. Drop  $EV_{DD}/SD V_{DD}$  supplies



**Hardware Design Considerations** 


### 4.3 General USB Layout Guidelines

### 4.3.1 USB D+ and D- High-Speed Traces

- 1. High speed clock and the USBD+ and USBD- differential pair should be routed first.
- 2. Route USBD+ and USBD- signals on the top layer of the board.
- 3. The trace width and spacing of the USBD+ and USBD- signals should be such that the differential impedance is  $90\Omega$ .
- 4. Route traces over continuous planes (power and ground)—they should not pass over any power/ground plane slots or anti-etch. When placing connectors, make sure the ground plane clear-outs around each pin have ground continuity between all pins.
- 5. Maintain the parallelism (skew matched) between USBD+ and USBD-. These traces should be the same overall length.
- 6. Do not route USBD+ and USBD- traces under oscillators or parallel to clock traces and/or data buses. Minimize the lengths of high speed signals that run parallel to the USBD+ and USBD- pair. Maintain a minimum 50mil spacing to clock signals.
- 7. Keep USBD+ and USBD- traces as short as possible.
- 8. Route USBD+, USBD-, and USBVBUS signals with a minimum amount of vias and corners. Use 45° turns.
- 9. Stubs should be avoided as much as possible. If they cannot be avoided, stubs should be no greater than 200mils.

### 4.3.2 USB VBUS Traces

Connecting the USBVBUS pin directly to the 5V VBUS signal from the USB connector can cause long-term reliability problems in the ESD network of the processor. Therefore, use of an external voltage divider for VBUS is recommended. Figure 4 and Figure 5 depict possible connections for VBUS. Point A, marked in each figure, is where a 5V version of VBUS should connect to the USBVBUS pin on the device.



**Figure 4. Preferred VBUS Connections** 

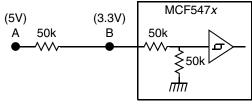



Figure 5. Alternate VBUS Connections

### 4.3.3 USB Receptacle Connections

It is recommended to connect the shield and the ground pin of the B USB receptacle for upstream ports to the board ground plane. The ground pin of the A USB receptacles for downstream ports should also be connected to the board ground plane, but industry practice varies widely on the connection of the shield of the A USB receptacles to other system grounds. Take precautions for control of ground loops between hosts and self-powered USB devices through the cable shield.



# 6 PLL Timing Specifications

The specifications in Table 7 are for the CLKIN pin.

| Table 7. Clock 1 | Timing Specifications |
|------------------|-----------------------|
|------------------|-----------------------|

| Num | Characteristic                       | Min  | Max | Units |
|-----|--------------------------------------|------|-----|-------|
| C1  | Cycle time                           | 15.0 | 40  | ns    |
| C2  | Rise time (20% of Vdd to 80% of vdd) | —    | 2   | ns    |
| C3  | Fall time (80% of Vdd to 20% of Vdd) | —    | 2   | ns    |
| C4  | Duty cycle (at 50% of Vdd)           | 40   | 60  | %     |

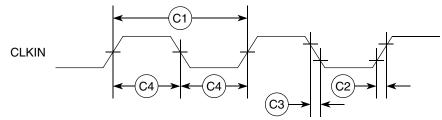
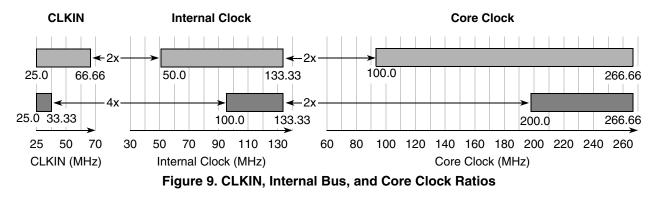



Figure 8. Input Clock Timing Diagram


Table 8 shows the supported PLL encodings.

| AD[12:8] <sup>1</sup> | Clock<br>Ratio | CLKIN—PCI and FlexBus<br>Frequency Range (MHz) | Internal XLB, SDRAM Bus,<br>and PSTCLK Frequency<br>Range (MHz) | Core Frequency Range<br>(MHz) |
|-----------------------|----------------|------------------------------------------------|-----------------------------------------------------------------|-------------------------------|
| 00011                 | 1:2            | 41.67–66.66                                    | 83.33–133.33                                                    | 166.66–266.66                 |
| 00101                 | 1:2            | 25.0-44.42                                     | 50.0–88.83 <sup>2</sup>                                         | 100.0–177.66                  |
| 01111                 | 1:4            | 25.0–33.3                                      | 100–133.33                                                      | 200–266.66                    |

<sup>1</sup> All other values of AD[12:8] are reserved.

<sup>2</sup> DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy down to 75 MHz. Check with the memory component specifications to verify.

Figure 9 correlates CLKIN, internal bus, and core clock frequencies for the 1x-4x multipliers.



MCF547x ColdFire<sup>®</sup> Microprocessor, Rev. 4



### 8.1 FlexBus AC Timing Characteristics

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.

| Num | Characteristic                                                                                                   | Min   | Max | Unit | Notes |
|-----|------------------------------------------------------------------------------------------------------------------|-------|-----|------|-------|
|     | Frequency of Operation                                                                                           | 25    | 66  | Mhz  | 1     |
| FB1 | Clock Period (CLKIN)                                                                                             | 15.15 | 40  | ns   | 2     |
| FB2 | Address, Data, and Control Output Valid (AD[31:0], FBCS[5:0],<br>R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST) | _     | 7.0 | ns   | 3     |
| FB3 | Address, Data, and Control Output Hold ((AD[31:0], FBCS[5:0], R/W, ALE, TSIZ[1:0], BE/BWE[3:0], OE, and TBST)    | 1     | —   | ns   | 3, 4  |
| FB4 | Data Input Setup                                                                                                 | 3.5   | —   | ns   |       |
| FB5 | Data Input Hold                                                                                                  | 0     | _   | ns   |       |
| FB6 | Transfer Acknowledge (TA) Input Setup                                                                            | 4     | _   | ns   |       |
| FB7 | Transfer Acknowledge (TA) Input Hold                                                                             | 0     | —   | ns   |       |
| FB8 | Address Output Valid (PCIAD[31:0])                                                                               | —     | 7.0 | ns   | 5     |
| FB9 | Address Output Hold (PCIAD[31:0])                                                                                | 0     | —   | ns   | 5     |

### Table 10. FlexBus AC Timing Specifications

<sup>1</sup> The frequency of operation is the same as the PCI frequency of operation. The MCF547X supports a single external reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI.

<sup>2</sup> Max cycle rate is determined by CLKIN and how the user has the system PLL configured.

<sup>3</sup> Timing for chip selects only applies to the FBCS[5:0] signals. Please see Section 9.2, "DDR SDRAM AC Timing Characteristics" for SDCS[3:0] timing.

<sup>4</sup> The FlexBus supports programming an extension of the address hold. Please consult the MCF547X specification manual for more information.

<sup>5</sup> These specs are used when the PCIAD[31:0] signals are configured as 32-bit, non-muxed FlexBus address signals.



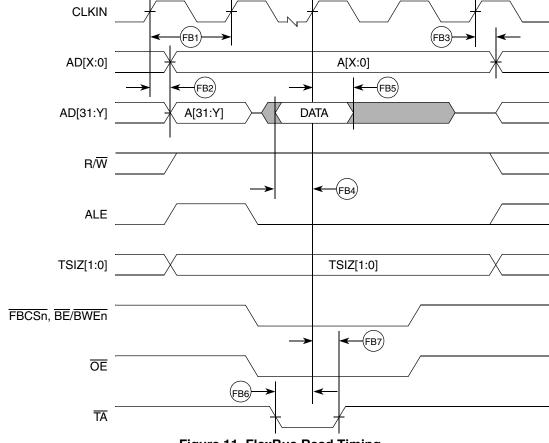


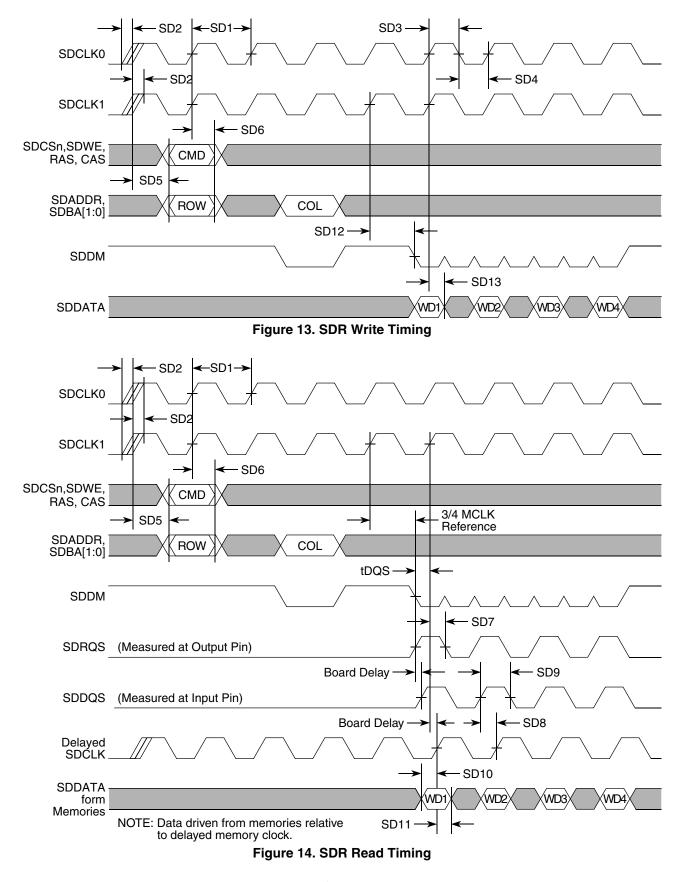

Figure 11. FlexBus Read Timing



SDRAM Bus

| Symbol | Characteristic                                                          | Min                                    | Мах                      | Unit     | Notes |
|--------|-------------------------------------------------------------------------|----------------------------------------|--------------------------|----------|-------|
|        | Frequency of Operation                                                  | 0                                      | 133                      | Mhz      | 1     |
| SD1    | Clock Period (t <sub>CK</sub> )                                         | 7.52                                   | 12                       | ns       | 2     |
| SD2    | Clock Skew (t <sub>SK</sub> )                                           |                                        | TBD                      |          |       |
| SD3    | Pulse Width High (t <sub>CKH</sub> )                                    | 0.45                                   | 0.55                     | SDCLK    | 3     |
| SD4    | Pulse Width Low (t <sub>CKL</sub> )                                     | 0.45                                   | 0.55                     | SDCLK    | 4     |
| SD5    | Address, CKE, CAS, RAS, WE, BA, CS - Output Valid ( $t_{CMV}$ )         |                                        | 0.5 × SDCLK +<br>1.0ns   | ns       |       |
| SD6    | Address, CKE, CAS, RAS, WE, BA, CS - Output Hold $(t_{CMH})$            | 2.0                                    |                          | ns       |       |
| SD7    | SDRDQS Output Valid (t <sub>DQSOV</sub> )                               |                                        | Self timed               | ns       | 5     |
| SD8    | SDDQS[3:0] input setup relative to SDCLK (t <sub>DQSIS</sub> )          | $0.25\times \text{SDCLK}$              | 0.40 	imes SDCLK         | ns       | 6     |
| SD9    | SDDQS[3:0] input hold relative to SDCLK (t <sub>DQSIH</sub> )           | Does not apply. 0.5 SDCLK fixed width. |                          | d width. | 7     |
| SD10   | Data Input Setup relative to SDCLK (reference only) (t <sub>DIS</sub> ) | 0.25 × SDCLK                           |                          | ns       | 8     |
| SD11   | Data Input Hold relative to SDCLK (reference only) (t <sub>DIH</sub> )  | 1.0                                    |                          | ns       |       |
| SD12   | Data and Data Mask Output Valid (t <sub>DV</sub> )                      |                                        | 0.75 × SDCLK<br>+0.500ns | ns       |       |
| SD13   | Data and Data Mask Output Hold (t <sub>DH</sub> )                       | 1.5                                    |                          | ns       |       |

### Table 11. SDR Timing Specifications


<sup>1</sup> The frequency of operation is 2x or 4x the CLKIN frequency of operation. The MCF547X supports a single external reference clock (CLKIN). This signal defines the frequency of operation for FlexBus and PCI, but SDRAM clock operates at the same frequency as the internal bus clock. Please see the PLL chapter of the MCF547X Reference Manual for more information on setting the SDRAM clock rate.

<sup>2</sup> SDCLK is one SDRAM clock in (ns).

- $^{3}$  Pulse width high plus pulse width low cannot exceed min and max clock period.
- <sup>4</sup> Pulse width high plus pulse width low cannot exceed min and max clock period.
- <sup>5</sup> SDR\_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SDR\_DQS only pulses during a read cycle and one pulse occurs for each data beat.
- <sup>6</sup> SDR\_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR\_DQS only pulses during a read cycle and one pulse occurs for each data beat.
- <sup>7</sup> The SDR\_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller.
- <sup>8</sup> Because a read cycle in SDR mode uses the DQS circuit within the MCF547X, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec is provided as guidance.



#### **SDRAM Bus**







SDRAM Bus

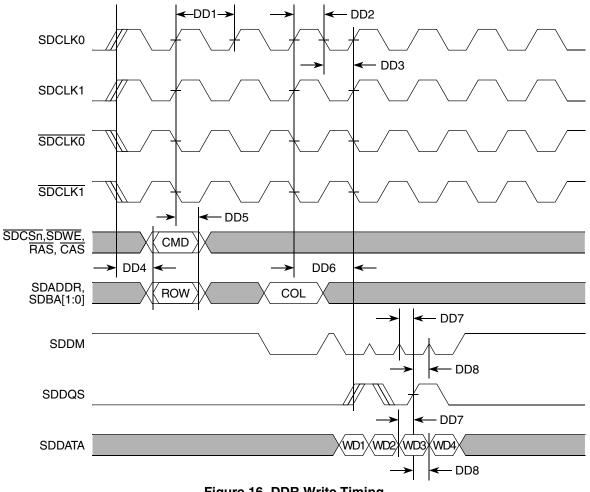
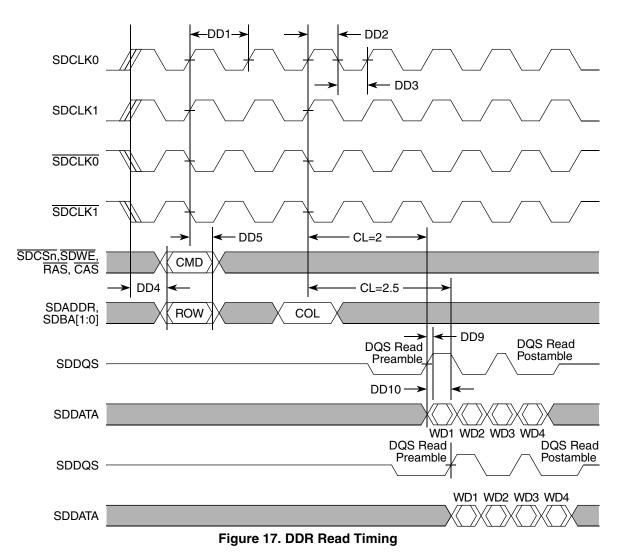




Figure 16. DDR Write Timing





### 10 PCI Bus

The PCI bus on the MCF547x is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Please refer to the PCI 2.2 spec for a more detailed timing analysis.

**Table 14. PCI Timing Specifications** 

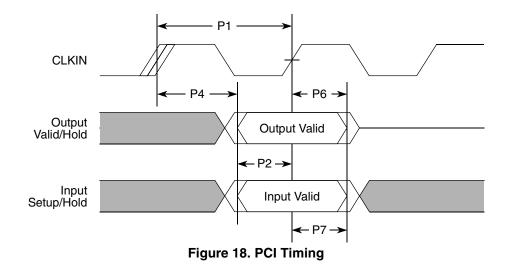
| Num | Characteristic                                                                    | Min   | Max  | Unit | Notes |
|-----|-----------------------------------------------------------------------------------|-------|------|------|-------|
|     | Frequency of Operation                                                            | 25    | 66   | MHz  | 1     |
| P1  | Clock Period (t <sub>CK</sub> )                                                   | 15.15 | 40   | ns   | 2     |
| P2  | Address, Data, and Command (33< PCI $\leq$ 66 Mhz)—Input Setup ( $t_{IS})$        | 3.0   | _    | ns   |       |
| P3  | Address, Data, and Command (0 < PCI $\leq$ 33 Mhz)—Input Setup (t <sub>IS</sub> ) | 7.0   | _    | ns   |       |
| P4  | Address, Data, and Command (33–66 Mhz)—Output Valid (t <sub>DV</sub> )            | _     | 6.0  | ns   | 3     |
| P5  | Address, Data, and Command (0–33 Mhz) - Output Valid (t <sub>DV</sub> )           | —     | 11.0 | ns   |       |
| P6  | PCI signals (0–66 Mhz) - Output Hold (t <sub>DH</sub> )                           | 0     | _    | ns   | 4     |



#### Fast Ethernet AC Timing Specifications

| Num | Characteristic                                                        | Min | Max | Unit | Notes |
|-----|-----------------------------------------------------------------------|-----|-----|------|-------|
| P7  | PCI signals (0–66 Mhz) - Input Hold (t <sub>IH</sub> )                | 0   | —   | ns   | 5     |
| P8  | PCI REQ/GNT (33 < PCI $\leq$ 66Mhz) - Output valid (t <sub>DV</sub> ) |     | 6   | ns   | 6     |
| P9  | PCI REQ/GNT (0 < PCI $\leq$ 33Mhz) - Output valid (t <sub>DV</sub> )  | _   | 12  | ns   |       |
| P10 | PCI REQ/GNT (33 < PCI $\leq$ 66Mhz) - Input Setup (t <sub>IS</sub> )  | —   | 5   | ns   |       |
| P11 | PCI REQ (0 < PCI $\leq$ 33Mhz) - Input Setup (t <sub>IS</sub> )       | 12  | _   | ns   |       |
| P12 | PCI GNT (0 < PCI $\leq$ 33Mhz) - Input Setup (t <sub>IS</sub> )       | 10  | —   | ns   |       |

Table 14. PCI Timing Specifications (continued)


<sup>1</sup> Please see the reset configuration signals description in the "Signal Descriptions" chapter within the *MCF547x Reference Manual*. Also specific guidelines may need to be followed when operating the system PLL below certain frequencies.

 $^2$  Max cycle rate is determined by CLKIN and how the user has the system PLL configured.

<sup>3</sup> All signals defined as PCI bused signals. Does not include PTP (point-to-point) signals.

<sup>4</sup> PCI 2.2 spec does not require an output hold time. Although the MCF547X may provide a slight amount of hold, it is not required or guaranteed.

- <sup>5</sup> PCI 2.2 spec requires zero input hold.
- <sup>6</sup> These signals are defined at PTP (Point-to-point) in the PCI 2.2 spec.



# 11 Fast Ethernet AC Timing Specifications

### 11.1 MII/7-WIRE Interface Timing Specs

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the EMAC\_10\_100 I/O signals.

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices. If this interface is to be used with a specific transceiver device the timing specs may be altered to match that specific transceiver.



Fast Ethernet AC Timing Specifications

### 11.3 MII Async Inputs Signal Timing (CRS, COL)

Table 17. MII Transmit Signal Timing

| Num | Characteristic               | Min | Max | Unit          |
|-----|------------------------------|-----|-----|---------------|
| M9  | CRS, COL minimum pulse width | 1.5 |     | TX_CLK period |
|     |                              |     |     |               |

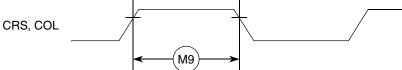
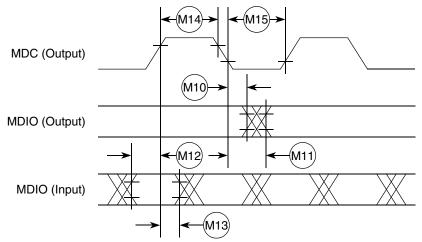




Figure 21. MII Async Inputs Timing Diagram

### 11.4 MII Serial Management Channel Timing (MDIO, MDC)

### Table 18. MII Serial Management Channel Signal Timing

| Num | Characteristic                                            | Min | Max        | Unit |
|-----|-----------------------------------------------------------|-----|------------|------|
| M10 | MDC falling edge to MDIO output invalid (min prop delay)  | 0   | _          | ns   |
| M11 | MDC falling edge to MDIO output valid<br>(max prop delay) | _   | 25         | ns   |
| M12 | MDIO (input) to MDC rising edge setup                     | 10  | _          | ns   |
| M13 | MDIO (input) to MDC rising edge hold                      |     | _          | ns   |
| M14 | MDC pulse width high 40% 60% M                            |     | MDC period |      |
| M15 | MDC pulse width low 40% 60%                               |     | MDC period |      |





MCF547x ColdFire<sup>®</sup> Microprocessor, Rev. 4

#### JTAG and Boundary Scan Timing

- <sup>1</sup> Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 21. The I<sup>2</sup>C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 21 are minimum values.
- <sup>2</sup> Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.
- <sup>3</sup> Specified at a nominal 50-pF load.

Figure 23 shows timing for the values in Table 20 and Table 21.

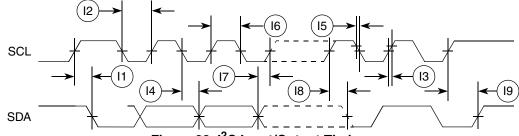



Figure 23. I<sup>2</sup>C Input/Output Timings

# 14 JTAG and Boundary Scan Timing

Table 22. JTAG and Boundary Scan Timing

| Num | Characteristics <sup>1</sup>                       | Symbol              | Min   | Max  | Unit            |
|-----|----------------------------------------------------|---------------------|-------|------|-----------------|
| J1  | TCLK Frequency of Operation                        | f <sub>JCYC</sub>   | DC    | 10   | MHz             |
| J2  | TCLK Cycle Period                                  | t <sub>JCYC</sub>   | 2     | —    | t <sub>CK</sub> |
| J3  | TCLK Clock Pulse Width                             | t <sub>JCW</sub>    | 15.15 | —    | ns              |
| J4  | TCLK Rise and Fall Times                           | t <sub>JCRF</sub>   | 0.0   | 3.0  | ns              |
| J5  | Boundary Scan Input Data Setup Time to TCLK Rise   | t <sub>BSDST</sub>  | 5.0   | —    | ns              |
| J6  | Boundary Scan Input Data Hold Time after TCLK Rise | t <sub>BSDHT</sub>  | 24.0  | —    | ns              |
| J7  | TCLK Low to Boundary Scan Output Data Valid        | t <sub>BSDV</sub>   | 0.0   | 15.0 | ns              |
| J8  | TCLK Low to Boundary Scan Output High Z            | t <sub>BSDZ</sub>   | 0.0   | 15.0 | ns              |
| J9  | TMS, TDI Input Data Setup Time to TCLK Rise        | t <sub>TAPBST</sub> | 5.0   | —    | ns              |
| J10 | TMS, TDI Input Data Hold Time after TCLK Rise      | t <sub>TAPBHT</sub> | 10.0  | —    | ns              |
| J11 | TCLK Low to TDO Data Valid                         | t <sub>TDODV</sub>  | 0.0   | 20.0 | ns              |
| J12 | TCLK Low to TDO High Z                             | t <sub>TDODZ</sub>  | 0.0   | 15.0 | ns              |
| J13 | TRST Assert Time                                   | t <sub>TRSTAT</sub> | 100.0 | _    | ns              |
| J14 | TRST Setup Time (Negation) to TCLK High            | t <sub>TRSTST</sub> | 10.0  | —    | ns              |

<sup>1</sup> MTMOD is expected to be a static signal. Hence, it is not associated with any timing



### JTAG and Boundary Scan Timing

Table 23 lists specifications for the debug AC timing parameters shown in Figure 29.

 Table 23. Debug AC Timing Specifications

| Num             | Characteristic           | 66 MHz |     | Units   |  |
|-----------------|--------------------------|--------|-----|---------|--|
|                 | Characteristic           | Min    | Max | Onits   |  |
| D1              | PSTDDATA to PSTCLK setup | 4.5    |     | ns      |  |
| D2              | PSTCLK to PSTDDATA hold  | 4.5    | _   | ns      |  |
| D3              | DSI-to-DSCLK setup       | 1      | _   | PSTCLKs |  |
| D4 <sup>1</sup> | DSCLK-to-DSO hold        | 4      | —   | PSTCLKs |  |
| D5              | D5 DSCLK cycle time      |        |     | PSTCLKs |  |

<sup>1</sup> DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 28 shows real-time trace timing for the values in Table 23.

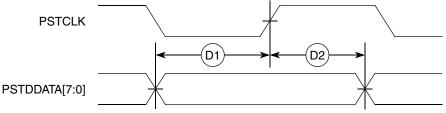



Figure 28. Real-Time Trace AC Timing

Figure 29 shows BDM serial port AC timing for the values in Table 23.

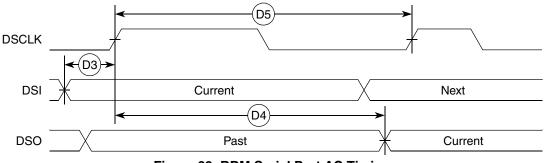
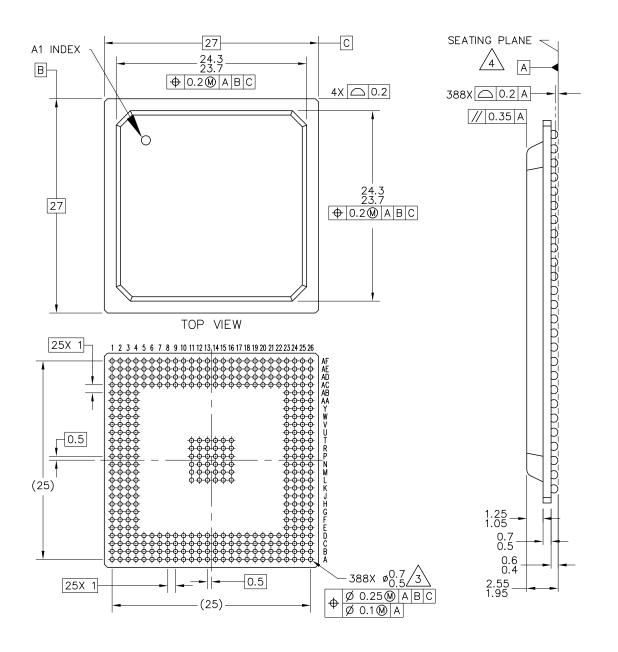




Figure 29. BDM Serial Port AC Timing



Case Drawing

# 17 Case Drawing



| © FRE                              | escale semiconductor, BOCTTOM<br>all rights reserved. | VNECHANICA   | LOUTLINE         | PRINT VERSION NO | SIDE VIEW |
|------------------------------------|-------------------------------------------------------|--------------|------------------|------------------|-----------|
| TITLE:                             | TITLE: 388 I/O, PBGA                                  |              | DOCUMENT NO      | ): 98ARS23880W   | REV: C    |
| 27 X 27 PKG,<br>1 MM PITCH (OMPAC) |                                                       | CASE NUMBER  | 8: 1164–02       | 25 JAN 2007      |           |
|                                    |                                                       | STANDARD: JE | DEC MS-034 AAL-1 |                  |           |

MCF547x ColdFire<sup>®</sup> Microprocessor, Rev. 4



NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

 $\overline{4.}$  datum a, the seating plane, is determined by the spherical crowns of the solder balls.

5. PACKAGE CODES: 5254 – 2 LAYER SUBSTRATE PACKAGE 5367 – 4 LAYER SUBSTRATE PACKAGE

|        | SCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA | LOUTLINE     | PRINT VERSION NO | T TO SCALE  |
|--------|---------------------------------------------------|-----------|--------------|------------------|-------------|
| TITLE: | 388 I/O, PBGA                                     |           | DOCUMENT NO  | ): 98ARS23880W   | REV: C      |
|        | 27 X 27 PKG,                                      |           | CASE NUMBER  | 2: 1164–02       | 25 JAN 2007 |
|        | 1 MM PITCH (OMPA                                  | C)        | STANDARD: JE | DEC MS-034 AAL-1 |             |

### Figure 31. 388-pin BGA Case Outline



**Revision History** 

# 18 Revision History

| Revision<br>Number | Date              | Substantive Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2                | August 29, 2005   | Table 7: Changed C1 maximum spec from 33.3 ns to 40 ns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3                | August 30, 2005   | Table 22: Changed J11 maximum from 15 ns to 20 ns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.4                | December 14, 2005 | Table 10: Changed FB1 maximum from 33.33 ns to 40 ns.Table 14: Changed FB1 maximum from 33.33 ns to 40 ns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                  | February 20, 2007 | Table 4: Updated DC electrical specifications, V <sub>IL</sub> and V <sub>IH</sub> .Table 6: Changed FlexBus output load from 20pF to 30pF.Added Section 4.3, "General USB Layout Guidelines."                                                                                                                                                                                                                                                                                                                                                                                          |
| 4                  | December 4, 2007  | Figure 2: Changed resistor value from 10W to $10\Omega$<br>Figure 3: Changed note 1 in from "IVDD should not exceed EVDD, SD VDD<br>or PLL VDD by more than 0.4V" to "IVDD should not exceed EVDD or SD<br>VDD by more than 0.4V"<br>Table 3: Updated thermal information for $\theta_{JMA}$ , $\theta_{JB}$ , and $\theta_{JC}$<br>Table 4: Added input leakage current spec.<br>Table 6: Added footnote regarding pads having balanced source & sink<br>current.<br>Table 9: Added RSTI pulse duration spec.<br>Added features list, pinout drawing, block diagram, and case outline. |



\_\_\_\_\_

THIS PAGE INTENTIONALLY BLANK



#### How to Reach Us:

Home Page: www.freescale.com

#### Web Support:

http://www.freescale.com/support

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5475EC Rev. 4 12/2007 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.

