

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

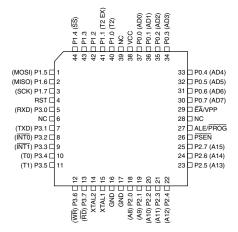
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	12MHz
Connectivity	SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89ls53-12jc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Pin Configurations

			1
(T2) P1.0 🗆	1	40	⊐ vcc
(T2 EX) P1.1 🗆	2	39	D P0.0 (AD0)
P1.2	3	38	DP0.1 (AD1)
P1.3 🗆	4	37	DP0.2 (AD2)
(SS) P1.4 🗆	5	36	DP0.3 (AD3)
(MOSI) P1.5 🗆	6	35	DP0.4 (AD4)
(MISO) P1.6 🗆	7	34	DP0.5 (AD5)
(SCK) P1.7 🗆	8	33	DP0.6 (AD6)
RST 🗆	9	32	DP0.7 (AD7)
(RXD) P3.0 🗆	10	31	EA/VPP
(TXD) P3.1 🗆	11	30	ALE/PROG
(INT0) P3.2 🗆	12	29	D PSEN
(INT1) P3.3 🗆	13	28	🗆 P2.7 (A15)
(T0) P3.4 🗆	14	27	🗆 P2.6 (A14)
(T1) P3.5 🗆	15	26	🗆 P2.5 (A13)
(WR) P3.6 🗆	16	25	🗆 P2.4 (A12)
(RD) P3.7 🗆	17	24	🗆 P2.3 (A11)
XTAL2 🗆	18	23	🗆 P2.2 (A10)
XTAL1 🗆	19	22	🗆 P2.1 (A9)
GND 🗆	20	21	🗆 P2.0 (A8)
			l

PDIP

Pin Description

V_{CC}

Supply voltage.

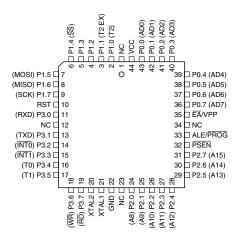
GND

Ground.

Port 0

2

Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.


Port 0 can also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode, P0 has internal pullups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}) because of the internal pullups.

Some Port 1 pins provide additional functions. P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.

PLCC

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000					SPCR 000001XX			0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000		SPSR 00XXXXXX						0AFH
0A0H	P2 11111111								0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111						WCON 00000010		97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000			8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000	SPDR XXXXXXXX	PCON 0XXX0000	87H

Table 1. AT89LS53 SFR Map and Reset Values

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 9) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16 bit capture mode or 16-bit auto-reload mode.

Watchdog Control Register The WCON register contains control bits for the Watchdog Timer (shown in Table 3). The DPS bit selects one of two DPTR registers available.

SPI Registers Control and status bits for the Serial Peripheral Interface are contained in registers SPCR (shown in Table 4) and SPSR (shown in Table 5). The SPI data bits are contained in the SPDR register. Writing the SPI data register during serial data transfer sets the Write Collision bit, WCOL, in the SPSR register. The SPDR is double buffered for writing and the values in SPDR are not changed by Reset.

Interrupt Registers The global interrupt enable bit and the individual interrupt enable bits are in the IE register. In addition, the individual interrupt enable bit for the SPI is in the SPCR register. Two priorities can be set for each of the six interrupt sources in the IP register.

Table 2. T2CON—Timer/Counter 2 Control Register

T2CON Address = 0C8H Reset Value = 0000 0000B										
Bit Addressable										
	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2		
Bit	7	6	5	4	3	2	1	0		
Symt	ol Eunctio	2								

Symbol	Function
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflows to be used for the receive clock.
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2	Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2	Timer or counter select for Timer 2. $C/T2 = 0$ for timer function. $C/T2 = 1$ for external event counter (falling edge triggered).
CP/RL2	Capture/Reload select. $CP/\overline{RL2} = 1$ causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2 = 0 causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

6

Dual Data Pointer Registers To facilitate accessing external data memory, two banks of 16 bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR WCON selects DP0 and DPS = 1 selects DP1. The user should always initalize the DPS bit to the appropriate value before accessing the respective Data Pointer register.

Power Off Flag The Power Off Flag (POF) is located at bit_4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and reset under software control and is not affected by RESET.

Table 3. WCON—Watchdog Control Register

Reset Value = 0000 0010B WCON Address = 96H PS2 PS1 PS0 DPS WDTRST WDTEN reserved reserved 6 5 4 3 2 0 Bit 7 1

Symbol	Function
PS2 PS1 PS0	Prescaler Bits for the Watchdog Timer. When all three bits are set to "0", the watchdog timer has a nominal period of 16 ms. When all three bits are set to "1", the nominal period is 2048 ms.
DPS	Data Pointer Register Select. DPS = 0 selects the first bank of Data Pointer Register, DP0, and DPS = 1 selects the second bank, DP1
WDTRST	Watchdog Timer Reset. Each time this bit is set to "1" by user software, a pulse is generated to reset the watchdog timer. The WDTRST bit is then automatically reset to "0" in the next instruction cycle. The WDTRST bit is Write-Only.
WDTEN	Watchdog Timer Enable Bit. WDTEN = 1 enables the watchdog timer and WDTEN = 0 disables the watchdog timer.

Table 4. SPCR—SPI Control Register

SPCR Address = D5H

Reset Value = 0000 01XXB

	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0
Bit	7	6	5	4	3	2	1	0

Symbol	Function										
SPIE		SPI Interrupt Enable. This bit, in conjunction with the ES bit in the IE register, enables SPI interrupts: SPIE = 1 and ES = 1 enable SPI interrupts. SPIE = 0 disables SPI interrupts.									
SPE		SPI = 1 enables the 1.7. SPI = 0 disable	e SPI channel and connects \overline{SS} , MOSI, MISO and SCK to pins P1.4, P1.5, as the SPI channel.								
DORD	Data Order.	Data Order. DORD = 1 selects LSB first data transmission. DORD = 0 selects MSB first data transmission.									
MSTR	Master/Slave	Master/Slave Select. MSTR = 1 selects Master SPI mode. MSTR = 0 selects Slave SPI mode.									
CPOL		Clock Polarity. When CPOL = 1, SCK is high when idle. When CPOL = 0, SCK of the master device is low when not transmitting. Please refer to figure on SPI Clock Phase and Polarity Control.									
СРНА			ether with the CPOL bit controls the clock and data relationship between to figure on SPI Clock Phase and Polarity Control.								
SPR0 SPR1	SPR0 have follows:	no effect on the slav	wo bits control the SCK rate of the device configured as master. SPR1 and ve. The relationship between SCK and the oscillator frequency, $F_{OSC.}$, is as								
	SPR1	SPR0	$SCK = F_{OSC}$ divided by								
	0	0	4								
	0	1	16								
	1	0	64								
	1	1	128								

Table 5. SPSR—SPI Status Register

SPSR	SPSR Address = AAH Reset Value = 00XX XXX									
	SPIF	WCOL	—	—	—	—	—	—		
Bit	7	6	5	4	3	2	1	0		

Symbol	Function
SPIF	SPI Interrupt Flag. When a serial transfer is complete, the SPIF bit is set and an interrupt is generated if SPIE = 1 and ES = 1. The SPIF bit is cleared by reading the SPI status register with SPIF and WCOL bits set, and then accessing the SPI data register.
WCOL	Write Collision Flag. The WCOL bit is set if the SPI data register is written during a data transfer. During data transfer, the result of reading the SPDR register may be incorrect, and writing to it has no effect. The WCOL bit (and the SPIF bit) are cleared by reading the SPI status register with SPIF and WCOL set, and then accessing the SPI data register.

8

Figure 3. Timer 2 Auto Reload Mode (DCEN = 1)

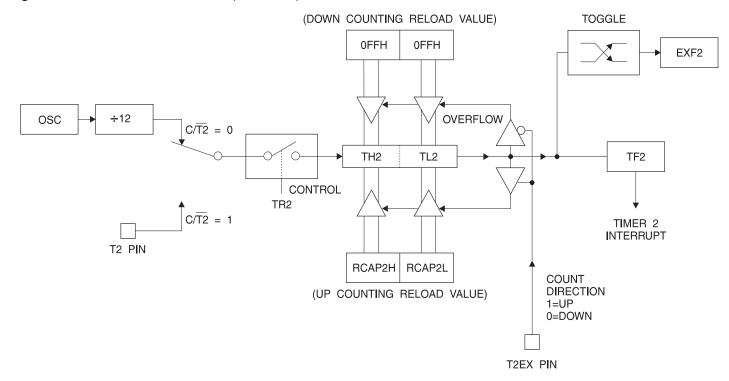
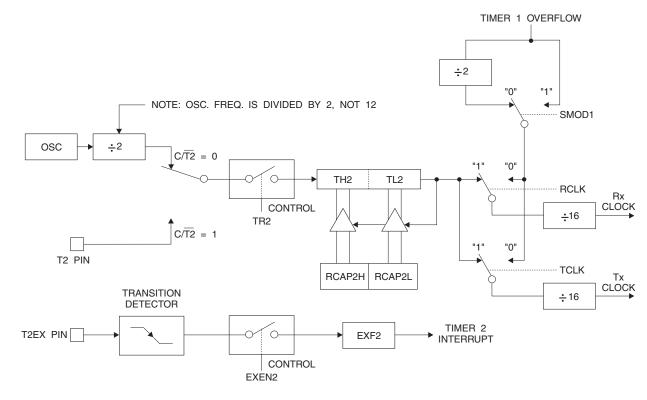



Figure 4. Timer 2 in Baud Rate Generator Mode

12 **AT89LS53**

Programmable Clock Out

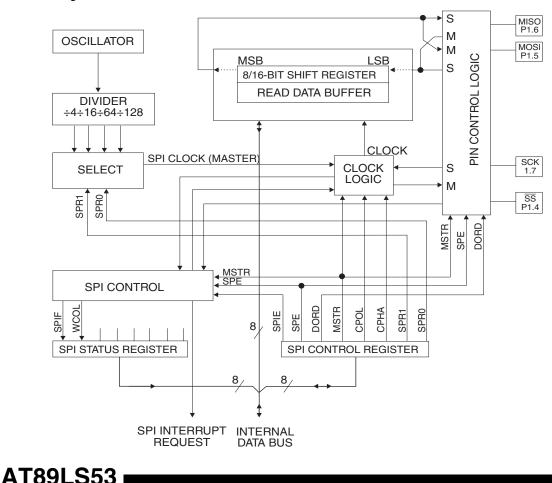
A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 5. This pin, besides being a regular I/0 pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 3 MHz at a 12 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit $C/\overline{T2}$ (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

Clock-Out Frequency= $\frac{\text{Oscillator Frequency}}{4 \times [65536 - (\text{RCAP2H}, \text{RCAP2L})]}$

In the clock-out mode, Timer 2 rollovers will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.


UART

The UART in the AT89LS53 operates the same way as the UART in the AT89C51, AT89C52 and AT89C55. For further information, see the October 1995 Atmel Microcontroller Data Book, page 2-49, section titled, "Serial Interface."

Serial Peripheral Interface

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the AT89LS53 and peripheral devices or between several AT89LS53 devices. The AT89LS53 SPI features include the following:

- Full-Duplex, 3-Wire Synchronous Data Transfer
- Master or Slave Operation
- 1.5-MHz Bit Frequency (max.)
- LSB First or MSB First Data Transfer
- Four Programmable Bit Rates
- End of Transmission Interrupt Flag
- Write Collision Flag Protection
- Wakeup from Idle Mode (Slave Mode Only)

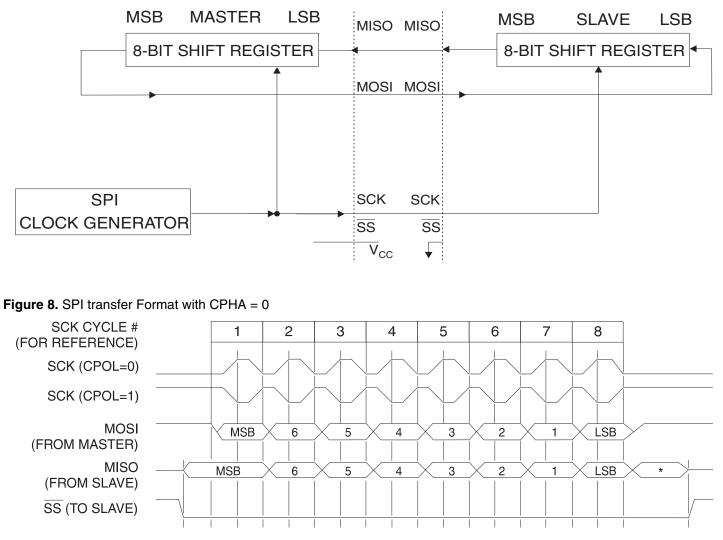
Figure 6. SPI Block Diagram

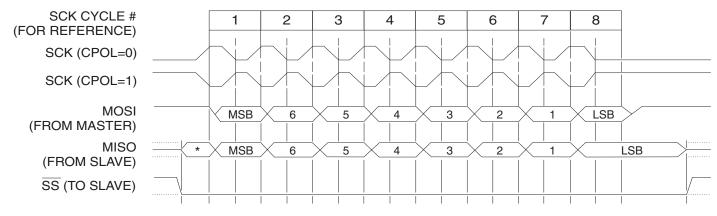
14

The interconnection between master and slave CPUs with SPI is shown in the following figure. The SCK pin is the clock output in the master mode but is the clock input in the slave mode. Writing to the SPI data register of the master CPU starts the SPI clock generator, and the data written shifts out of the MOSI pin and into the MOSI pin of the slave CPU. After shifting one byte, the SPI clock generator stops, setting the end of transmission flag (SPIF). If both the SPI interrupt enable bit (SPIE) and the serial port interrupt enable bit (ES) are set, an interrupt is requested.

The Slave Select input, $\overline{SS}/P1.4$, is set low to select an individual SPI device as a slave. When $\overline{SS}/P1.4$ is set high, the SPI port is deactivated and the MOSI/P1.5 pin can be used as an input.

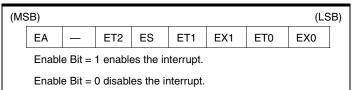
There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figures 8 and 9.




Figure 7. SPI Master-Slave Interconnection

*Not defined but normally MSB of character just received

Figure 9. SPI Transfer Format with CPHA = 1


*Not defined but normally LSB of previously transmitted character

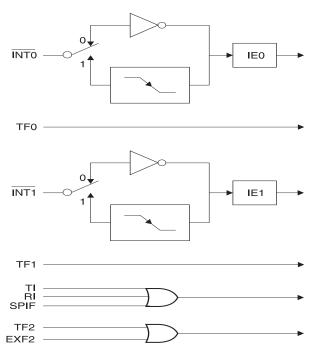
Interrupts

The AT89LS53 has a total of six interrupt vectors: two external interrupts (INTO and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 10 shows that bit position IE.6 is unimplemented. In the AT89C51 and AT89LV51, bit position IE.5 is also unimplemented. User software should not write 1s to

Symbol	Position	Function				
EA	IE.7	Disables all interrupts. If $EA = 0$, no interrupt is acknowledged. If $EA = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.				
— IE.6 Reserved.						
ET2	IE.5	Timer 2 interrupt enable bit.				
ES	IE.4	SPI and UART interrupt enable bit.				
ET1	IE.3	Timer 1 interrupt enable bit.				
EX1	IE.2	External interrupt 1 enable bit.				
ET0	IE.1	Timer 0 interrupt enable bit.				
EX0	External interrupt 0 enable bit.					
		ever write 1s to unimplemented bits, because ure AT89 products.				


Table 10. Interrupt Enable (IE) Register

these bit positions, since they may be used in future AT89 products.

Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.

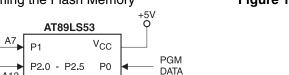
The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.

Figure 10. Interrupt Sources

AT89LS53

Flash Parallel Programming Modes"h" = weakly pulled "High" internally.

	1			Ū.	1	î	1		1	
Mode	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.6	P2.7	P3.6	P3.7	Data I/O P0.7:0	Address P2.5:0 P1.7:0
Serial Prog. Modes	Н	h ⁽⁾	h ⁽⁾	х						
Chip Erase	н	L		12V	н	L	L	L	х	х
Write (12K bytes) Memory	н	L	\mathbf{v}	12V	L	н	н	н	DIN	ADDR
Read (12K bytes) Memory	н	L	Н	12V	L	L	н	н	DOUT	ADDR
Write Lock Bits:	н	L	٦٢	12V	н	L	н	L	DIN	Х
Bit - 1									P0.7 = 0	х
Bit - 2									P0.6 = 0	х
Bit - 3									P0.5 = 0	х
Read Lock Bits:	н	L	Н	12V	н	н	L	L	DOUT	Х
Bit - 1									@P0.2	х
Bit - 2									@P0.1	х
Bit - 3									@P0.0	х
Read Atmel Code	н	L	Н	12V	L	L	L	L	DOUT	30H
Read Device Code	н	L	Н	12V	L	L	L	L	DOUT	31H
Serial Prog. Enable	н	L		12V	L	н	L	н	P0.0 = 0	х
Serial Prog. Disable	н	L		12V	L	н	L	н	P0.0 = 1	х
Read Serial Prog. Fuse	Н	L	Н	12V	Н	Н	L	Н	@P0.0	Х


1. Chip Erase and Serial Programming Fuse require a 10-ms PROG pulse. Chip Erase needs to be performed first before reprogramming any byte with a content other than FFH.

2. P3.4 is pulled Low during programming to indicate RDY/BSY.

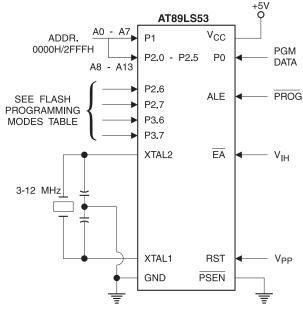

3. "X" = don't care

Figure 13. Programming the Flash Memory

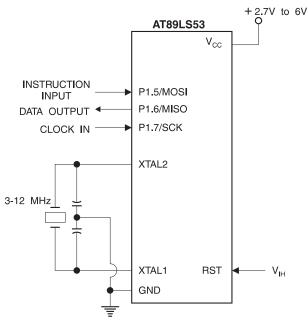
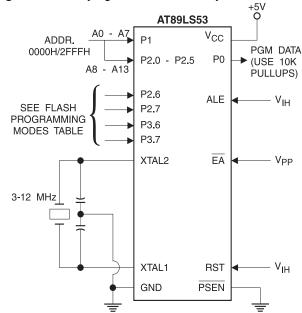
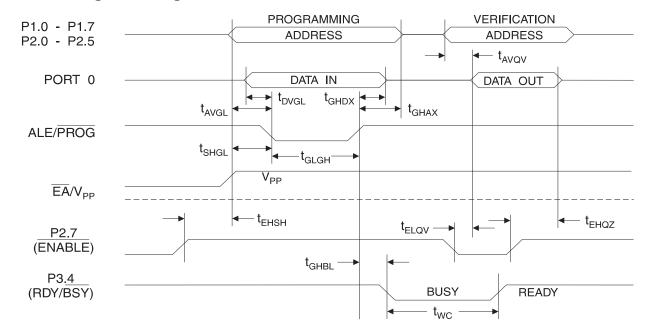



Figure 15. Verifying the Flash Memory


Flash Programming and Verification Characteristics - Parallel Mode

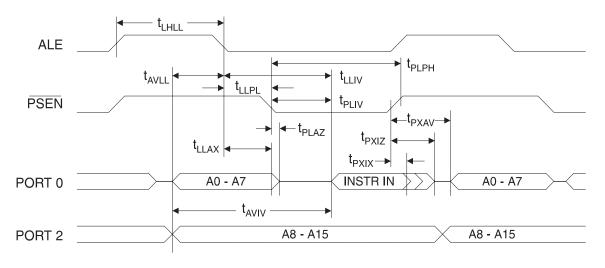
 T_{A} = 0°C to 70°C, V_{CC} = 5.0V \pm 10%

Symbol	Parameter	Min	Max	Units	
V _{PP}	Programming Enable Voltage	11.5	12.5	V	
I _{PP}	Programming Enable Current		1.0	mA	
1/t _{CLCL}	Oscillator Frequency	3	12	MHz	
t _{AVGL}	Address Setup to PROG Low	48t _{CLCL}			
t _{GHAX}	Address Hold After PROG	48t _{CLCL}			
t _{DVGL}	Data Setup to PROG Low	48t _{CLCL}			
t _{GHDX}	Data Hold After PROG	48t _{CLCL}			
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48t _{CLCL}			
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs	
t _{GLGH}	PROG Width	1	110	μs	
t _{AVQV}	Address to Data Valid		48t _{CLCL}		
t _{ELQV}	ENABLE Low to Data Valid		48t _{CLCL}		
t _{EHQZ}	Data Float After ENABLE	0	48t _{CLCL}		
t _{GHBL}	PROG High to BUSY Low		1.0	μS	
t _{WC}	Byte Write Cycle Time		2.0	ms	

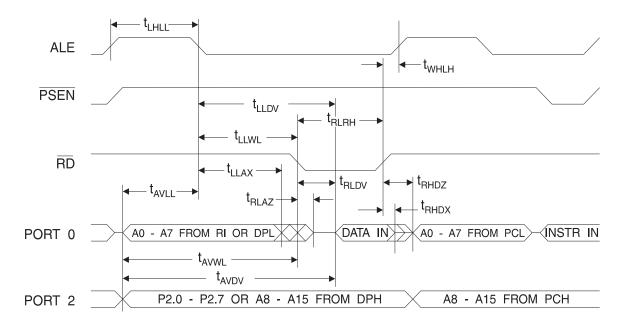
Flash Programming and Verification Waveforms - Parallel Mode

Serial Downloading Waveforms

SERIAL CLOCK INPUT	Г
SCK/P1.7	
SERIAL DATA INPUT	7 6 5 4 3 2 1 0
MOSI/P1.5	MSB
SERIAL DATA OUTPU	Т
MISO/P1.6	MSB

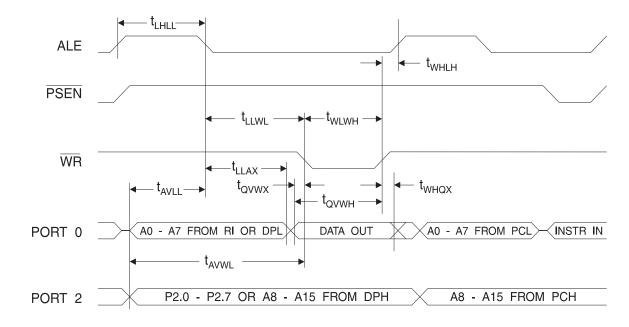

AC Characteristics

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

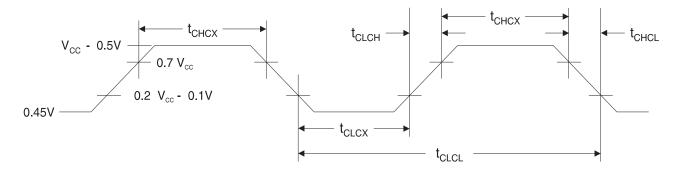

External Program and Data Memory Characteristics

		12MHz Oscillator		Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency			0	12	MHz
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} - 40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} - 40		ns
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} - 35		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} - 100	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} - 40		ns
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} - 45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} - 105	ns
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} - 25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} - 8		ns
t _{AVIV}	Address to Valid Instruction In		312		5t _{CLCL} - 105	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} - 100		ns
t _{WLWH}	WR Pulse Width	400		6t _{CLCL} - 100		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} - 165	ns
t _{RHDX}	Data Hold After RD	0		0		ns
t _{RHDZ}	Data Float After RD		97		2t _{CLCL} - 70	ns
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} - 150	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} - 165	ns
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} - 50	3t _{CLCL} + 50	ns
t _{AVWL}	Address to \overline{RD} or \overline{WR} Low	203		4t _{CLCL} - 130		ns
t _{QVWX}	Data Valid to WR Transition	23		t _{CLCL} - 60		ns
t _{QVWH}	Data Valid to WR High	433		7t _{CLCL} - 150		ns
t _{WHQX}	Data Hold After WR	33		t _{CLCL} - 50		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{WHLH}	RD or WR High to ALE High	43	123	t _{CLCL} - 40	t _{CLCL} + 40	ns

External Program Memory Read Cycle



External Data Memory Read Cycle

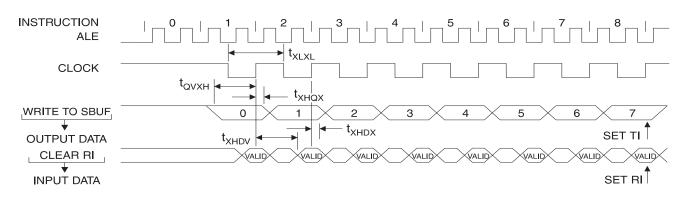


External Data Memory Write Cycle

External Clock Drive Waveforms

External Clock Drive

		١	V _{CC} = 2.7V to 6.0V			
Symbol	Parameter	Min	Max	Units		
1/t _{CLCL}	Oscillator Frequency	0	12	MHz		
t _{CLCL}	Clock Period	83.3		ns		
t _{CHCX}	High Time	30		ns		
t _{CLCX}	Low Time	30		ns		
t _{CLCH}	Rise Time		20	ns		
t _{CHCL}	Fall Time		20	ns		

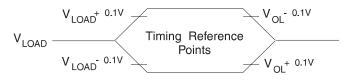

28 AT89LS53

Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for V_{CC} = 2.7V to 6V and Load Capacitance = 80 pF.

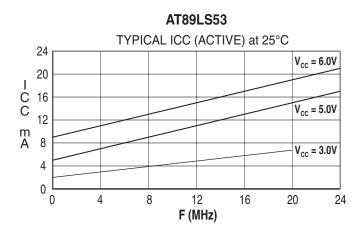
		12 MHz Oscillator		Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Max	Units
t _{XLXL}	Serial Port Clock Cycle Time	1.0		12t _{CLCL}		μS
t _{QVXH}	Output Data Setup to Clock Rising Edge	700		10t _{CLCL} - 133		ns
t _{XHQX}	Output Data Hold After Clock Rising Edge	50		2t _{CLCL} - 117		ns
t _{XHDX}	Input Data Hold After Clock Rising Edge	0		0		ns
t _{XHDV}	Clock Rising Edge to Input Data Valid		700		10t _{CLCL} - 133	ns

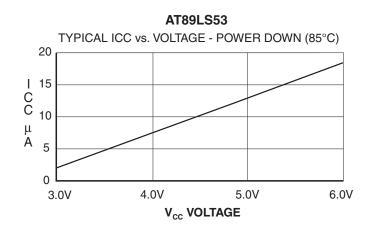
Shift Register Mode Timing Waveforms

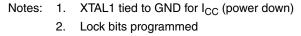


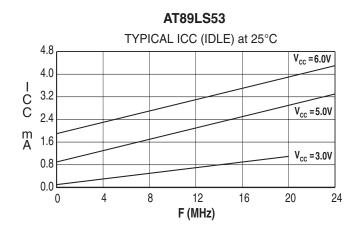
AC Testing Input/Output Waveforms ⁽¹⁾

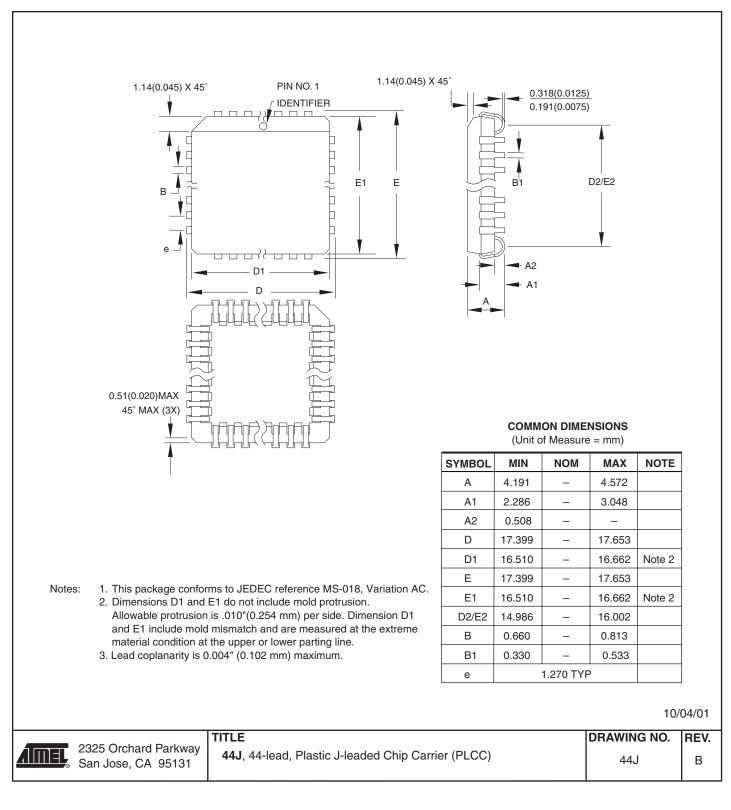
Notes: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.


Float Waveforms ⁽¹⁾




Notes: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.




Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
12	2.7V to 6.0V	AT89LS53-12AC AT89LS53-12JC AT89LS53-12PC	44A 44J 40P6	Commercial (0°C to 70°C)
	2.7V to 6.0V	AT89LS53-12AI AT89LS53-12JI AT89LS53-12PI	44A 44J 40P6	Industrial (-40°C to 85°C)

	Package Type		
44 A	44 Lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)		
44J	44 Lead, Plastic J-Leaded Chip Carrier (PLCC)		
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)		

44J – PLCC

