

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4244lqq-443

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
Analog Blocks	6
Programmable Digital	7
Fixed Function Digital	8
GPIO	8
Special Function Peripherals	
Pinouts	10
Power	16
Unregulated External Supply	16
Regulated External Supply	17
Development Support	18
Documentation	18
Online	18
Tools	18
Electrical Specifications	19
Absolute Maximum Ratings	19
Device Level Specifications	19

Analog Peripherals	23
Digital Peripherals	27
Memory	30
System Resources	31
Ordering Information	35
Part Numbering Conventions	36
Packaging	37
Acronyms	41
Document Conventions	43
Units of Measure	43
Revision History	44
Sales, Solutions, and Legal Information	45
Worldwide Sales and Design Support	45
Products	45
PSoC® Solutions	45
Cypress Developer Community	45
Technical Support	45

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4200 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4200 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4200 Flash supports the following flash protection modes at the memory subsystem level:

- Open: No Protection. Factory default mode in which the product is shipped.
- Protected: User may change from Open to Protected. This mode disables Debug interface accesses. The mode can be set back to Open but only after completely erasing the Flash.
- Kill: User may change from Open to Kill. This mode disables all Debug accesses. The part cannot be erased externally, thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, row-level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

SRAM

SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 16. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low-voltage detect (LVD)). The PSoC 4200 operates with a single external supply over the range of 1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4200 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4200 consists of the internal main oscillator (IMO) and the internal low-power oscillator (ILO) and a provision for an external clock.

Figure 3. PSoC 4200 MCU Clocking Architecture

The HFCLK signal can be divided down (see PSoC 4200 MCU Clocking Architecture) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4200, each with 16-bit divide capability; this allows eight to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator. When UDB-generated pulse interrupts are used, SYSCLK must equal HFCLK.

IMO Clock Source

The IMO is the primary source of internal clocking in PSoC 4200. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 MHz to 48 MHz in steps of 1 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low-power oscillator, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

PSoC 4200 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the Reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4200 reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal to noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC

The 12-bit 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to \pm 1%) and by providing the choice (for the PSoC-4200 case) of three internal voltage references: V_{DD}, V_{DD}/2, and V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The sample-and-hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision providing appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 4. SAR ADC System Diagram

Two Opamps (CTBm Block)

PSoC 4200 has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the S/H circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.

Low-power Comparators

PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

Figure 5. UDB Array

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 6. Port Interface

Special Function Peripherals

LCD Segment Drive

PSoC 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

WLCSP Package Bootloader

The WLCSP package is supplied with an I²C Bootloader installed in flash. The bootloader is compatible with PSoC Creator bootloadable project files and has the following default settings:

- I²C SCL and SDA connected to port pins P4.0 and P4.1 respectively (external pull-up resistors required)
- I²C Slave mode, address 8, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator Bootloader Component default
- Occupies the bottom 4.5 KB of flash

For more information on this bootloader, see the following Cypress application note:

AN73854 - Introduction to Bootloaders

Note that a PSoC Creator bootloadable project must be associated with *.hex* and *.elf* files for a bootloader project that is configured for the target device. Bootloader *.hex* and *.elf* files can be found at http://www.cypress.com/?rID=78632. The factory-installed bootloader can be overwritten using JTAG or SWD programming.

Pinouts

The following is the pin-list for the PSoC 4200 (44-TQFP, 40-QFN, 28-SSOP, and 48-TQFP). Port 2 comprises of the high-speed Analog inputs for the SAR Mux. P1.7 is the optional external input and bypass for the SAR reference. Ports 3 and 4 contain the Digital Communication channels. All pins support CSD CapSense and Analog Mux Bus connections.

4	4-TQFP	4	0-QFN	28	3-SSOP	48	B-TQFP		Alternate Functions for Pins				Die Desseintien
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
1	VSS	_	-	-	-	-	-	-	_	-	-	_	Ground
2	P2.0	1	P2.0	-	-	2	P2.0	sarmux.0	-	-	-	-	Port 2 Pin 0: gpio, lcd, csd, sarmux
3	P2.1	2	P2.1	-	-	3	P2.1	sarmux.1	-	-	-	-	Port 2 Pin 1: gpio, lcd, csd, sarmux
4	P2.2	3	P2.2	5	P2.2	4	P2.2	sarmux.2	-	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
5	P2.3	4	P2.3	6	P2.3	5	P2.3	sarmux.3	-	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
6	P2.4	5	P2.4	7	P2.4	6	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
7	P2.5	6	P2.5	8	P2.5	7	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
8	P2.6	7	P2.6	9	P2.6	8	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
9	P2.7	8	P2.7	10	P2.7	9	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
10	VSS	9	VSS	-	-	-	-	-	-	-	-	-	Ground
-	-	_	-	-	-	10	NC	-	_	-	-	-	No Connect
-	-	_	-	-	-	11	NC	-	_	-	-	-	No Connect
11	P3.0	10	P3.0	11	P3.0	12	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
12	P3.1	11	P3.1	12	P3.1	13	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
13	P3.2	12	P3.2	13	P3.2	14	P3.2	-	tcpwm1_p[0]	-	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
-	-	_	-	-	-	15	VSSD	-	_	-	-	-	Ground
14	P3.3	13	P3.3	14	P3.3	16	P3.3	-	tcpwm1_n[0]	-	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
15	P3.4	14	P3.4	-	-	17	P3.4	-	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
16	P3.5	15	P3.5	-	-	18	P3.5	-	tcpwm2_n[0]	-	-	scb1_spi_ssel_2	Port 3 Pin 5: gpio, lcd, csd, pwm, scb1
17	P3.6	16	P3.6	-	-	19	P3.6	-	tcpwm3_p[0]	-	swd_io[1]	scb1_spi_ssel_3	Port 3 Pin 6: gpio, lcd, csd, pwm, scb1, swd
18	P3.7	17	P3.7	-	-	20	P3.7	-	tcpwm3_n[0]	-	swd_clk[1]	-	Port 3 Pin 7: gpio, lcd, csd, pwm, swd
19	VDDD	-	-	-	-	21	VDDD	-	-	-	-	-	Digital Supply, 1.8 - 5.5V
20	P4.0	18	P4.0	15	P4.0	22	P4.0	-	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
21	P4.1	19	P4.1	16	P4.1	23	P4.1	-	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
22	P4.2	20	P4.2	17	P4.2	24	P4.2	csd_c_mod	-	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
23	P4.3	21	P4.3	18	P4.3	25	P4.3	csd_c_sh_tank	-	-	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
-	-	_	-	-	-	26	NC	-	_	-	-	_	No Connect
-	_	-	-	-	_	27	NC	-	-	-	-	-	No Connect

The following is the pin-list for the PSoC 4200 (35-WLCSP).

35-Ba	all CSP		Alte	ernate Functions	for Pins		Bin Description
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	
D3	P2.2	sarmux.2	_	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
E4	P2.3	sarmux.3	_	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
E5	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
E6	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
E3	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
E2	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
E1	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
D2	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
D1	P3.2	-	tcpwm1_p[0]	-	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
B7	VSS	-	_	-	-	-	Ground
C1	P3.3	-	tcpwm1_n[0]	-	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
C2	P3.4	-	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
B1	P4.0	-	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
B2	P4.1	-	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
A2	P4.2	csd_c_mod	_	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
A1	P4.3	csd_c_sh_tank	_	-	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
C3	P0.0	comp1_inp	_	-	-	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
A5	P0.1	comp1_inn	_	-	-	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
A4	P0.2	comp2_inp	_	-	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
A3	P0.3	comp2_inn	-	-	-	-	Port 0 Pin 3: gpio, lcd, csd, comp
B3	P0.4	-	-	scb1_uart_rx[1]	scb1_i2c_scl[1]	scb1_spi_mosi[1]	Port 0 Pin 4: gpio, lcd, csd, scb1
A6	P0.5	_	_	scb1_uart_tx[1]	scb1_i2c_sda[1]	scb1_spi_miso[1]	Port 0 Pin 5: gpio, lcd, csd, scb1
B4	P0.6	-	ext_clk	-	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
B5	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
B6	XRES	-	-	-	-	-	Chip reset, active low
A7	VCCD	-	-	-	-	-	Regulated supply, connect to 1µF cap or 1.8V
C7	VDD	-	-	-	-	-	Supply, 1.8 - 5.5V
C4	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	_	_	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
C5	P1.1	ctb.oa0.inm	tcpwm2_n[1]	-	-	-	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
C6	P1.2	ctb.oa0.out	tcpwm3_p[1]	-	-	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm

35-Ball	I CSP		Alte	rnate Functions	for Pins		Pin Description			
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	r in Description			
D7	P1.3	ctb.oa1.out	tcpwm3_n[1]	_	_	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm			
D4	P1.4	ctb.oa1.inm	_	_	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb			
D5	P1.5	ctb.oa1.inp	_	_	_	-	Port 1 Pin 5: gpio, lcd, csd, ctb			
D6	P1.6	ctb.oa0.inp_alt	-	_	-	-	Port 1 Pin 6: gpio, lcd, csd			
E7 P	P1.7/VR EF	ctb.oa1.inp_alt ext_vref	-	-	-	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref			

Descriptions of the Pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following packages are supported: 48-pin TQFP, 44-pin TQFP, 40-pin QFN, and 28-pin SSOP.

Power

The following power system diagrams show the minimum set of power supply pins as implemented for the PSoC 4200. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4200 supplies the internal logic and the V_{CCD} output of PSoC 4200 must be bypassed to ground via an external capacitor (in the range of 1 μ F to 1.6 μ F; X5R ceramic or better).

 V_{DDA} and V_{DDD} must be shorted together; the grounds, V_{SSA} and V_{SS} must also be shorted together. Bypass capacitors must be used from V_{DDD} to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μF range in parallel with a smaller capacitor (0.1 μF for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 13. 48-TQFP Package Example

Figure 14. 44-TQFP Package Example

Power Supply	Bypass Capacitors
$V_{DDD} - V_{SS}$	0.1- μ F ceramic at each pin (C2, C6) plus bulk capacitor 1 μ F to 10 μ F (C1). Total capacitance may be greater than 10 μ F.
V _{DDA} -V _{SSA}	0.1- μ F ceramic at pin (C4). Additional 1 μ F to 10 μ F (C3) bulk capacitor. Total capacitance may be greater than 10 μ F.
$V_{CCD} - V_{SS}$	1-μF ceramic capacitor at the VCCD pin (C5)
V _{REF} –V _{SSA} (optional)	The internal bandgap may be bypassed with a $1-\mu F$ to $10-\mu F$ capacitor. Total capacitance may be greater than 10 μF .

Note It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (V_{DDA} , V_{DDD} , or V_{CCD})

is a significant percentage of the rated working voltage. VDDA must be equal to or higher than the VDDD supply when powering up.

Figure 16. 28-SSOP Example

Regulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that must be within the range of 1.71 V to 1.89 V (1.8 ±5%); note that this range needs to include power supply ripple too. In this mode, V_{CCD}, V_{DDA}, and V_{DDD} pins are all shorted together and bypassed. The internal regulator is disabled in firmware.

Development Support

The PSoC 4200 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	_	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	_	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	_	-	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	_	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	
SID66	C _{IN}	Input capacitance	-	_	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	_	_	mV	Guaranteed by characterization
SID69	IDIODE	Current through protection diode to V_{DD}/Vss	-	-	100	μA	Guaranteed by characterization
SID69A	ITOT_GPIO	Maximum Total Source or Sink Chip Current	_	_	200	mA	Guaranteed by characterization

Table 5. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	-	-	33	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	-	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	48	MHz	90/10% V _{IO}

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	1	μs	Guaranteed by characterization

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	_	-	
SID269	I _{DD HI}	Power = high	-	1100	1850	μA	
SID270	IDD MED	Power = medium	-	550	950	μA	
SID271	IDD LOW	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	_	_	
SID272	GBW_HI	Power = high	6	-	_	MHz	
SID273	GBW_MED	Power = medium	4	_	-	MHz	
SID274	GBW_LO	Power = low	-	1	_	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	-	_	_	
SID275	IOUT MAX HI	Power = high	10	-	_	mA	
SID276	Iout max mid	Power = medium	10	-	_	mA	
SID277	IOUT_MAX_LO	Power = low	-	5	_	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	_	_	_	
SID278	I _{OUT MAX HI}	Power = high	4	_	-	mA	
SID279	Iout max mid	Power = medium	4	-	_	mA	
SID280	IOUT MAX LO	Power = low	-	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA – 0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA-0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	_		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	-	VDDA-0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	-	VDDA-0.2	V	
SID285	V _{OUT_3}	Power = medium, Iload=1 mA	0.2	-	VDDA-0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	VDDA-0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	_	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	_	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode. TA ≤ 85 °C
SID290Q	VOS_DR_TR	Offset voltage drift, trimmed	15	±3	15	µV/°C	High mode. TA \leq 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	µV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	µV/°C	Low mode
SID291	CMRR	DC	70	80	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V
	Noise		-	-	-	-	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	-	μVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	-	72	-	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	-	28	_	nV/rtHz	

Table 24. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	_	_	ns
SID169	Т _{НМО}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	_	ns

Table 25. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	-	42 + 3 × Tscbclk	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	_	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	-	ns

Memory

Table 26. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 27. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[3]	Row erase time	1	-	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	1	-	7	ms	
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	1	Ι	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	-	-	7	seconds	Guaranteed by charac- terization
SID181	F _{END}	Flash endurance	100 K	-	-	cycles	Guaranteed by charac- terization
SID182	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	_	-	years	Guaranteed by charac- terization
SID182A		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	years	Guaranteed by charac- terization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105~^\circ\text{C}, 10~\text{K}$ P/E cycles, \le three years at $T_A \ge 85~^\circ\text{C}$	10	-	20	years	Guaranteed by charac- terization

Note

^{3.} It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (IPOR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by charac- terization
SID187	VIPORHYST	Hysteresis	15	-	200	mV	Guaranteed by charac- terization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	_	_	V	Full functionality between 1.71 V and BOD trip voltage is guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	_	-	V	Guaranteed by charac- terization
BID55	Svdd	Maximum power supply ramp rate	-	_	67	kV/sec	

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	_	100	μA	Guaranteed by characterization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
SID212	T _{MONTRIP}	Voltage monitor trip time	-	-	1	μs	Guaranteed by characterization		

Ordering Information

The PSoC 4200 part numbers and features are listed in the following table.

Table 41.	PSoC 4200	Family	Ordering	Information
-----------	-----------	--------	----------	-------------

							Fea	ature	s					Package				
Family	NGM	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	35-WLCSP	40-QFN	44-TQFP	48-TQFP
	CY8C4244PVI-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24					
	CY8C4244PVI-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244FNI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	31		\checkmark			
	CY8C4244LQI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXI-443	48	16	4	2	2			1 Msps	2	4	2	36				\checkmark	
	CY8C4244LQQ-443	48	16	4	2	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXQ-443	48	16	4	2	2			1 Msps	2	4	2	36				\checkmark	
-	CY8C4244AZI-443	48	16	4	2	2			1 Msps	2	4	2	36					
:200	CY8C4245AXI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
4	CY8C4245AXQ-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245AZI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245PVI-482	48	32	4	4	1			1 Msps	2	4	2	24					
	CY8C4245PVQ-482	48	32	4	4	1			1 Msps	2	4	2	24					
	CY8C4245FNI-483(T)	48	32	4	4	2			1 Msps	2	4	2	31		\checkmark			
	CY8C4245LQI-483	48	32	4	4	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXI-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36				\checkmark	
	CY8C4245LQQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					
	CY8C4245AZI-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

Example	- CY8C + A + C + C + C + C + C + C + C + C +
	Cypress Prefix
4: PSoC 4	Architecture
2: 4200 Family	Family within Architecture
4: 48 MHz	Speed Grade
5: 32 KB	Flash Capacity ————————————————————————————————————
AX: TQFP	Package Code
I: Industrial	Temperature Range
	Attributes Set

The Field Values are listed in the following table.

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Δ	Family within archi-	1	4100 Family
	tecture	2	4200 Family
в	B CPU Speed		24 MHz
В			48 MHz
C Flash Capacity		4	16 KB
Ŭ		5	32 KB
		AX, AZ	TQFP
DE	Package Code	LQ	QFN
	T ackage code	PV	SSOP
		FN	WLCSP
F	Temperature Range	I	Industrial
	Temperature Range	Q	Extended Industrial
XYZ	Attributes Code	000-999	Code of feature set in specific family

Packaging

Table 42. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	105	°C
TJ	Operating junction temperature		-40	-	125	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/Watt
T _{JA}	Package θ_{JA} (35-ball WLCSP)		-	28.00	-	°C/Watt
T _{JA}	Package θ_{JA} (40-pin QFN)		-	15.34	-	°C/Watt
T _{JA}	Package θ_{JA} (44-pin TQFP)		-	57.16	-	°C/Watt
T _{JA}	Package θ_{JA} (48-pin TQFP)		-	67.30	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	26.28	-	°C/Watt
T _{JC}	Package θ_{JC} (35-ball WLCSP)		-	00.40	-	°C/Watt
T _{JC}	Package θ_{JC} (40-pin QFN)		-	2.50	_	°C/Watt
T _{JC}	Package θ_{JC} (44-pin TQFP)		-	17.47	_	°C/Watt
T _{JC}	Package θ_{JC} (48-pin TQFP)		-	27.60	_	°C/Watt

Table 43. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds
35-ball WLCSP	260 °C	30 seconds
40-pin QFN	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin TQFP	260 °C	30 seconds

Table 44. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3
35-ball WLCSP	MSL 3
40-pin QFN	MSL 3
44-pin TQFP	MSL 3
48-pin TQFP	MSL 3

PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents.

001-80659 *A

Figure 19. 40-pin QFN Package Outline

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD

2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 20. 44-pin TQFP Package Outline

