

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245axi-473

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - AN81623: Digital Design Best Practices
 - □ AN73854: Introduction To Bootloaders
 - AN89610: ARM Cortex Code Optimization
 - □ AN90071: CY8CMBRxxx CapSense Design Guide

- Technical Reference Manual (TRM) is in two documents: Architecture TRM details each PSoC 4 functional block.
 - Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Contents

Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
Analog Blocks	6
Programmable Digital	7
Fixed Function Digital	8
GPIO	8
Special Function Peripherals	
Pinouts	10
Power	16
Unregulated External Supply	16
Regulated External Supply	17
Development Support	18
Documentation	18
Online	18
Tools	18
Electrical Specifications	19
Absolute Maximum Ratings	19
Device Level Specifications	19

Analog Peripherals	23
Digital Peripherals	27
Memory	30
System Resources	31
Ordering Information	35
Part Numbering Conventions	36
Packaging	37
Acronyms	41
Document Conventions	43
Units of Measure	43
Revision History	44
Sales, Solutions, and Legal Information	45
Worldwide Sales and Design Support	45
Products	45
PSoC® Solutions	45
Cypress Developer Community	45
Technical Support	45

Figure 2. Block Diagram

The PSoC 4200 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4200 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, with very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4200 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200 allows the customer to make.

Two Opamps (CTBm Block)

PSoC 4200 has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the S/H circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.

Low-power Comparators

PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

Figure 5. UDB Array

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 6. Port Interface

Special Function Peripherals

LCD Segment Drive

PSoC 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

WLCSP Package Bootloader

The WLCSP package is supplied with an I²C Bootloader installed in flash. The bootloader is compatible with PSoC Creator bootloadable project files and has the following default settings:

- I²C SCL and SDA connected to port pins P4.0 and P4.1 respectively (external pull-up resistors required)
- I²C Slave mode, address 8, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator Bootloader Component default
- Occupies the bottom 4.5 KB of flash

For more information on this bootloader, see the following Cypress application note:

AN73854 - Introduction to Bootloaders

Note that a PSoC Creator bootloadable project must be associated with *.hex* and *.elf* files for a bootloader project that is configured for the target device. Bootloader *.hex* and *.elf* files can be found at http://www.cypress.com/?rID=78632. The factory-installed bootloader can be overwritten using JTAG or SWD programming.

Figure 9. 40-Pin QFN Pinout

Figure 10. 35-Ball WLCSP

CYPRESS

Power

The following power system diagrams show the minimum set of power supply pins as implemented for the PSoC 4200. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4200 supplies the internal logic and the V_{CCD} output of PSoC 4200 must be bypassed to ground via an external capacitor (in the range of 1 μ F to 1.6 μ F; X5R ceramic or better).

 V_{DDA} and V_{DDD} must be shorted together; the grounds, V_{SSA} and V_{SS} must also be shorted together. Bypass capacitors must be used from V_{DDD} to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μF range in parallel with a smaller capacitor (0.1 μF for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 13. 48-TQFP Package Example

Figure 14. 44-TQFP Package Example

Power Supply	Bypass Capacitors					
$V_{DDD} - V_{SS}$	0.1- μ F ceramic at each pin (C2, C6) plus bulk capacitor 1 μ F to 10 μ F (C1). Total capacitance may be greater than 10 μ F.					
V _{DDA} -V _{SSA}	0.1- μ F ceramic at pin (C4). Additional 1 μ F to 10 μ F (C3) bulk capacitor. Total capacitance may be greater than 10 μ F.					
$V_{CCD} - V_{SS}$	1-μF ceramic capacitor at the VCCD pin (C5)					
V _{REF} –V _{SSA} (optional)	The internal bandgap may be bypassed with a $1-\mu F$ to $10-\mu F$ capacitor. Total capacitance may be greater than 10 μF .					

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
Deep Sleep	Mode, V _{DD} =	1.8 V to 3.6 V (Regulator on)					
SID31	IDD26	I ² C wakeup and WDT on.	-	1.3	-	μA	T = 25 °C
SID32	IDD27	I ² C wakeup and WDT on.	-	-	45	μA	T = 85 °C
Deep Sleep	Mode, V _{DD} =	3.6 V to 5.5 V					
SID34	IDD29	I ² C wakeup and WDT on	-	1.5	15	μΑ	Typ. at 25 °C. Max at 85 °C.
Deep Sleep	Mode, V _{DD} =	1.71 V to 1.89 V (Regulator bypassed)					
SID37	IDD32	I ² C wakeup and WDT on.	-	1.7	-	μA	T = 25 °C
SID38	IDD33	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep	Mode, +105	°C					
SID33Q	IDD28Q	I ² C wakeup and WDT on. Regulator Off.	-	_	135	μA	V _{DD} = 1.71 to 1.89
SID34Q	IDD29Q	I ² C wakeup and WDT on.	-	-	180	μA	V _{DD} = 1.8 to 3.6
SID35Q	IDD30Q	I ² C wakeup and WDT on.	-	-	140	μA	V _{DD} = 3.6 to 5.5
Hibernate M	/lode, V _{DD} = 1	.8 V to 3.6 V (Regulator on)					
SID40	IDD35	GPIO and Reset active	-	150	-	nA	T = 25 °C
SID41	IDD36	GPIO and Reset active	-	-	1000	nA	T = 85 °C
Hibernate M	/lode, V _{DD} = 3	8.6 V to 5.5 V					
SID43	IDD38	GPIO and Reset active	-	150	-	nA	T = 25 °C
Hibernate M	/lode, V _{DD} = 1	.71 V to 1.89 V (Regulator bypassed)					
SID46	IDD41	GPIO and Reset active	-	150	-	nA	T = 25 °C
SID47	IDD42	GPIO and Reset active	1	-	1000	nA	T = 85 °C
Hibernate M	/lode, +105 °C						
SID42Q	IDD37Q	Regulator Off	1	-	19.4	μA	V _{DD} = 1.71 to 1.89
SID43Q	IDD38Q		1	-	17	μA	V _{DD} = 1.8 to 3.6
SID44Q	IDD39Q		-	-	16	μA	V _{DD} = 3.6 to 5.5
Stop Mode							
SID304	IDD43A	Stop Mode current; V _{DD} = 3.3 V	-	20	80	nA	Typ. at 25 °C. Max at 85 °C.
Stop Mode,	+105 °C						
SID304Q	IDD43AQ	Stop Mode current; V _{DD} = 3.6 V	-	-	5645	nA	
XRES curre	ent						
SID307	IDD_XR	Supply current while XRES asserted	-	2	5	mA	

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \le V_{DD} \le 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	_	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	25	μs	24 MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate and Stop modes	_	-	2	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	_	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	_	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	_	-	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	_	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	
SID66	C _{IN}	Input capacitance	-	_	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	_	_	mV	Guaranteed by characterization
SID69	IDIODE	Current through protection diode to V_{DD}/Vss	-	-	100	μA	Guaranteed by characterization
SID69A	ITOT_GPIO	Maximum Total Source or Sink Chip Current	_	_	200	mA	Guaranteed by characterization

Table 5. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	-	-	33	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	-	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	48	MHz	90/10% V _{IO}

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	1	μs	Guaranteed by characterization

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID296	V _{N4}	Input referred, 100kHz, power = high	-	15	_	nV/rtHz	
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge$ 2.7 V	6	-	_	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	_	300	_	μs	
SID299A	OL_GAIN	Open Loop Gain	-	90	-	dB	Guaranteed by design
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	_	-	_		
SID300	T _{PD1}	Response time; power = high	_	150	-	ns	
SID301	T _{PD2}	Response time; power = medium	-	400	_	ns	
SID302	T _{PD3}	Response time; power = low	-	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Comparatorr

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	_	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	_	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V _{DD} -1.	_	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	_	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	_	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	_	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	_	6	28	μÂ	Guaranteed by characterization

CSD

Table 14. CSD Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID.CSD#16	IDAC1IDD	IDAC1 (8 bits) block current	-	-	1125	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7 bits) block current	-	-	1125	μA	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	
SID308A	Vcompidac	Voltage compliance range of IDAC for S0	0.8	-	VDD-0.8	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	-	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	-	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	-	3	LSB	
SID313	SNR	Ratio of counts of finger to noise, 0.1-pF sensitivity	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1-pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8 bits) in High range	_	612	-	uA	
SID314A	IDAC1_CRT2	Output current of Idac1 (8 bits) in Low range	-	306	_	uA	
SID315	IDAC2_CRT1	Output current of Idac2 (7 bits) in High range	_	304.8	-	uA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7 bits) in Low range	_	152.4	-	uA	
SID320	IDACOFFSET	All zeroes input	-	-	±1	LSB	
SID321	IDACGAIN	Full-scale error less offset	_	-	±10	%	
SID322	IDACMISMATCH	Mismatch between IDACs	_	-	7	LSB	
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor	_	2.2	-	nF	5-V rating, X7R or NP0 cap.

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	-	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	_	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	_	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	-	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	_	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

ľC

Table 16. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	1	1	1.4	μA	

Table 17. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	

Table 24. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	_	_	ns
SID169	Т _{НМО}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	_	ns

Table 25. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	-	42 + 3 × Tscbclk	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	_	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	-	ns

Memory

Table 26. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 27. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	-	_	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[3]	Row erase time	1	-	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	1	-	7	ms	
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	1	Ι	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	-	-	7	seconds	Guaranteed by charac- terization
SID181	F _{END}	Flash endurance	100 K	-	-	cycles	Guaranteed by charac- terization
SID182	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	_	-	years	Guaranteed by charac- terization
SID182A		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	years	Guaranteed by charac- terization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105~^\circ\text{C}, 10~\text{K}$ P/E cycles, \le three years at $T_A \ge 85~^\circ\text{C}$	10	-	20	years	Guaranteed by charac- terization

Note

^{3.} It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	_	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48	MHz	Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55	%	Guaranteed by characterization

Table 38. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p	erformance	•					
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	_	-	48	MHz	
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	_	-	48	MHz	
PLD Perfor	mance in UDB						
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	_	-	48	MHz	
Clock to O	utput Performance						
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	_	15	_	ns	
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns	

Ordering Information

The PSoC 4200 part numbers and features are listed in the following table.

Table 41.	PSoC 4200	Family	Ordering	Information
-----------	-----------	--------	----------	-------------

		Features										Package						
Family	NGW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	35-WLCSP	40-QFN	44-TQFP	48-TQFP
	CY8C4244PVI-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24	\checkmark				
4200	CY8C4244PVI-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24					
	CY8C4244PVQ-442	48	16	4	2	1	\checkmark		1 Msps	2	4	2	24					
	CY8C4244FNI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	31		\checkmark			
	CY8C4244LQI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	36				\checkmark	
	CY8C4244LQQ-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXQ-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	36				\checkmark	
	CY8C4244AZI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	36					\checkmark
	CY8C4245AXI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36				\checkmark	
	CY8C4245AXQ-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36				\checkmark	
	CY8C4245AZI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					\checkmark
-	CY8C4245PVI-482	48	32	4	4	1			1 Msps	2	4	2	24					
	CY8C4245PVQ-482	48	32	4	4	1	\checkmark	\checkmark	1 Msps	2	4	2	24					
	CY8C4245FNI-483(T)	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	31		\checkmark			
	CY8C4245LQI-483	48	32	4	4	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXI-483	48	32	4	4	2			1 Msps	2	4	2	36				\checkmark	
	CY8C4245LQQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					
	CY8C4245AZI-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					\checkmark

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

Example	- CY8C + A + C + C + C + C + C + C + C + C +
	Cypress Prefix
4: PSoC 4	Architecture
2: 4200 Family	Family within Architecture
4: 48 MHz	Speed Grade
5: 32 KB	Flash Capacity ————————————————————————————————————
AX: TQFP	Package Code
I: Industrial	Temperature Range
	Attributes Set

The Field Values are listed in the following table.

Field	Description	Values	Meaning					
CY8C	Cypress Prefix							
4	Architecture	4	PSoC 4					
۸	Family within archi-	1	4100 Family					
	tecture	2	4200 Family					
р	CPU Speed	2	24 MHz					
В	CFU Speed	4	48 MHz					
С	Elash Canacity	4	16 KB					
		5	32 KB					
		AX, AZ	TQFP					
DE	Packago Codo	LQ	QFN					
	T ackage Code	PV	SSOP					
		FN	WLCSP					
F	Temperature Range	I	Industrial					
	remperature Mange	Q	Extended Industrial					
XYZ	Attributes Code	000-999	Code of feature set in specific family					

001-80659 *A

Figure 19. 40-pin QFN Package Outline

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD

2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 20. 44-pin TQFP Package Outline

Document Conventions

Units of Measure

Table 46. Units of Measure

Symbol	Unit of Measure						
°C	degrees Celsius						
dB	decibel						
fF	femto farad						
Hz	hertz						
KB	1024 bytes						
kbps	kilobits per second						
Khr	kilohour						
kHz	kilohertz						
kΩ	kilo ohm						
ksps	kilosamples per second						
LSB	least significant bit						
Mbps	megabits per second						
MHz	megahertz						
MΩ	mega-ohm						
Msps	megasamples per second						
μA	microampere						
μF	microfarad						
μH	microhenry						
μs	microsecond						
μV	microvolt						
μW	microwatt						
mA	milliampere						
ms	millisecond						
mV	millivolt						
nA	nanoampere						
ns	nanosecond						
nV	nanovolt						
Ω	ohm						
pF	picofarad						
ppm	parts per million						
ps	picosecond						
s	second						
sps	samples per second						
sqrtHz	square root of hertz						
V	volt						

Revision History

Description Title: PSoC [®] 4: PSoC 4200 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-87197						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*B	4108562	WKA	08/29/2013	Added clarifying note about the XRES pin in the Reset section. Updated UDB Array diagram. Added a link reference to the PSoC 4 TRM. Updated the footnote in Absolute Maximum Ratings. Updated Sleep Mode IDD specs in DC Specifications. Updated Comparator DC Specifications Updated SAR ADC AC Specifications Updated LCD Direct Drive DC Specifications Updated the number of GPIOs in Ordering Information.		
*C	4568937	MKEA/ WKA	11/19/2014	Added More Information and PSoC Creator sections. Added 48-pin TQFP pin and package details. Added SID308A spec details. Updated Ordering Information.		
*D	4617283	WKA	01/08/2015	Corrected typo in the ordering information table. Updated 28-pin SSOP package diagram.		
*E	4643655	WKA	04/29/2015	Added 35 WLCSP pinout and package detail information. Updated CSD specifications.		
*F	5287114	WKA	06/09/2016	Added reference to AN90071 in the More Information section. Updated Flash section with details of flash protection modes. Added notes in the Pinouts section. Updated 40-pin QFN and 28-pin SSOP pin diagrams. Added PSoC 4 Power Supply diagram. Updated the Bypass Capacitors column in the Power Supply table. Updated values for SID32, SID34, SID38, SID269, SID270, SID271. Added SID299A. Updated Comparator Specifications. Updated TCPWM Specifications. Updated values for SID149, SID160, SID171. Updated Conditions for SID190. Added BID55. Removed Conditions for SID237. Added reference to PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints in the Packaging section.		
*G	5327384	WKA	06/28/2016	Removed capacitor connection for Pin 15 in Figure 13.		
*H	5702140	GNKK	04/19/2017	Updated the Cypress logo and copyright information.		