

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245azi-483

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - AN81623: Digital Design Best Practices
 - AN73854: Introduction To Bootloaders
 - □ AN89610: ARM Cortex Code Optimization
 - □ AN90071: CY8CMBRxxx CapSense Design Guide

- Technical Reference Manual (TRM) is in two documents:
 - Architecture TRM details each PSoC 4 functional block.
 - Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

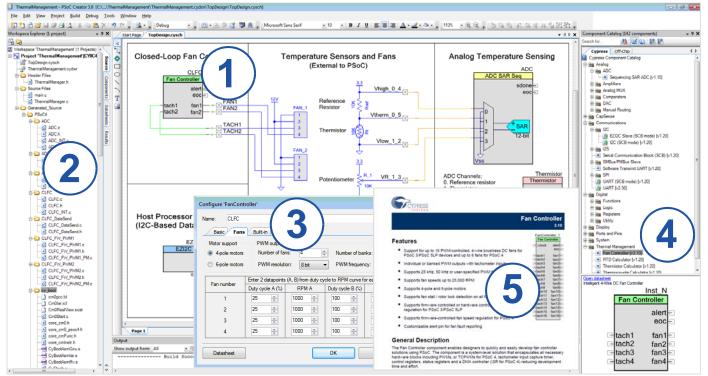
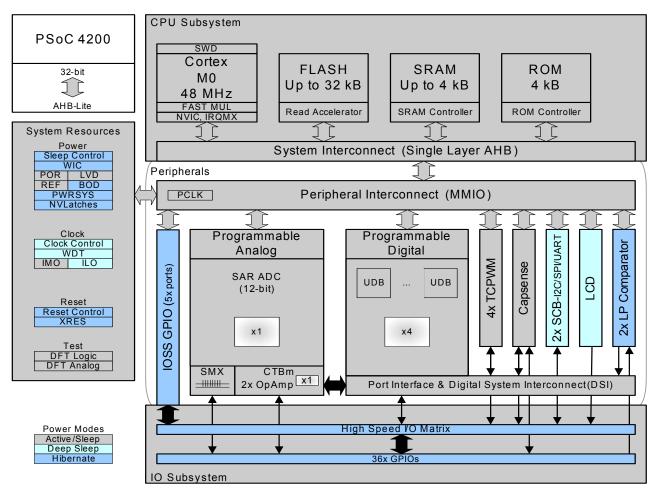



Figure 2. Block Diagram

The PSoC 4200 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4200 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, with very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4200 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200 allows the customer to make.

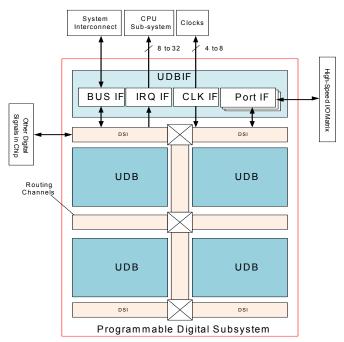
Two Opamps (CTBm Block)

PSoC 4200 has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the S/H circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.

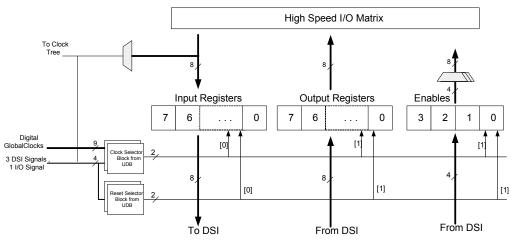
Low-power Comparators


PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.


Figure 5. UDB Array

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 6. Port Interface

Fixed Function Digital

Timer/Counter/PWM Block (TCPWM)

The TCPWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4200 has two SCBs, which can each implement an I²C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. The required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on VDD, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, refer to the UM10204 I2C bus specification and user manual (the latest revision is available at www.nxp.com).

PSoC 4200 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-Mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do not intervene but a Master that has just become activated may start an Arbitration cycle.

■ When the SCB is in I²C slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

PSoC 4200 has 36 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - □ Analog input mode (input and output buffers disabled) □ Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4200 since it has 4.5 ports).

Special Function Peripherals

LCD Segment Drive

PSoC 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

WLCSP Package Bootloader

The WLCSP package is supplied with an I²C Bootloader installed in flash. The bootloader is compatible with PSoC Creator bootloadable project files and has the following default settings:

- I²C SCL and SDA connected to port pins P4.0 and P4.1 respectively (external pull-up resistors required)
- I²C Slave mode, address 8, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator Bootloader Component default
- Occupies the bottom 4.5 KB of flash

For more information on this bootloader, see the following Cypress application note:

AN73854 - Introduction to Bootloaders

Note that a PSoC Creator bootloadable project must be associated with *.hex* and *.elf* files for a bootloader project that is configured for the target device. Bootloader *.hex* and *.elf* files can be found at http://www.cypress.com/?rID=78632. The factory-installed bootloader can be overwritten using JTAG or SWD programming.

Pinouts

The following is the pin-list for the PSoC 4200 (44-TQFP, 40-QFN, 28-SSOP, and 48-TQFP). Port 2 comprises of the high-speed Analog inputs for the SAR Mux. P1.7 is the optional external input and bypass for the SAR reference. Ports 3 and 4 contain the Digital Communication channels. All pins support CSD CapSense and Analog Mux Bus connections.

44	4-TQFP	40)-QFN	28	3-SSOP	48	-TQFP		Alte	ernate Functions f	or Pins		Dia Deserintian
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
1	VSS	-	-	-	-	-	-	_	_	_	_	_	Ground
2	P2.0	1	P2.0	-	-	2	P2.0	sarmux.0	-	-	-	-	Port 2 Pin 0: gpio, lcd, csd, sarmux
3	P2.1	2	P2.1	-	-	3	P2.1	sarmux.1	-	-	-	-	Port 2 Pin 1: gpio, lcd, csd, sarmux
4	P2.2	3	P2.2	5	P2.2	4	P2.2	sarmux.2	-	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
5	P2.3	4	P2.3	6	P2.3	5	P2.3	sarmux.3	-	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
6	P2.4	5	P2.4	7	P2.4	6	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
7	P2.5	6	P2.5	8	P2.5	7	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
8	P2.6	7	P2.6	9	P2.6	8	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
9	P2.7	8	P2.7	10	P2.7	9	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
10	VSS	9	VSS	-	-	-	-	-	-	-	-	-	Ground
-	-	-	-	-	-	10	NC	-	-	-	-	-	No Connect
-	-	-	-	-	-	11	NC	-	-	-	-	-	No Connect
11	P3.0	10	P3.0	11	P3.0	12	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
12	P3.1	11	P3.1	12	P3.1	13	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
13	P3.2	12	P3.2	13	P3.2	14	P3.2	-	tcpwm1_p[0]	-	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
-	-	-	-	-	-	15	VSSD	-	-	-	-	-	Ground
14	P3.3	13	P3.3	14	P3.3	16	P3.3	-	tcpwm1_n[0]	-	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
15	P3.4	14	P3.4	-	-	17	P3.4	-	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
16	P3.5	15	P3.5	-	-	18	P3.5	-	tcpwm2_n[0]	-	-	scb1_spi_ssel_2	Port 3 Pin 5: gpio, lcd, csd, pwm, scb1
17	P3.6	16	P3.6	-	-	19	P3.6	-	tcpwm3_p[0]	-	swd_io[1]	scb1_spi_ssel_3	Port 3 Pin 6: gpio, lcd, csd, pwm, scb1, swd
18	P3.7	17	P3.7	-	-	20	P3.7	-	tcpwm3_n[0]	-	swd_clk[1]	-	Port 3 Pin 7: gpio, lcd, csd, pwm, swd
19	VDDD	-	-	-	-	21	VDDD	-	-	-	-	-	Digital Supply, 1.8 - 5.5V
20	P4.0	18	P4.0	15	P4.0	22	P4.0	-	-	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
21	P4.1	19	P4.1	16	P4.1	23	P4.1	-	-	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
22	P4.2	20	P4.2	17	P4.2	24	P4.2	csd_c_mod	-	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
23	P4.3	21	P4.3	18	P4.3	25	P4.3	csd_c_sh_tank	-	-	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
-	-	-	-	-	-	26	NC	-	-	-	-	-	No Connect
-	-	-	-	-	-	27	NC	_	_	_	-	_	No Connect

The following is the pin-list for the PSoC 4200 (35-WLCSP).

35-Ba	all CSP		Alte	rnate Functions	for Pins		Din Deparintian
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
D3	P2.2	sarmux.2	_	_	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
E4	P2.3	sarmux.3	_	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
E5	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
E6	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
E3	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
E2	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
E1	P3.0	_	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
D2	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
D1	P3.2	_	tcpwm1_p[0]	_	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
B7	VSS	-	-	-	-	-	Ground
C1	P3.3	_	tcpwm1_n[0]	_	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
C2	P3.4	_	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
B1	P4.0	_	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
B2	P4.1	_	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
A2	P4.2	csd_c_mod	_	_	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
A1	P4.3	csd_c_sh_tank	_	_	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
C3	P0.0	comp1_inp	-	-	-	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
A5	P0.1	comp1_inn	-	-	-	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
A4	P0.2	comp2_inp	_	_	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
A3	P0.3	comp2_inn	_	_	_	_	Port 0 Pin 3: gpio, lcd, csd, comp
B3	P0.4	-	-	scb1_uart_rx[1]	scb1_i2c_scl[1]	scb1_spi_mosi[1]	Port 0 Pin 4: gpio, lcd, csd, scb1
A6	P0.5	_	_	scb1_uart_tx[1]	scb1_i2c_sda[1]	scb1_spi_miso[1]	Port 0 Pin 5: gpio, lcd, csd, scb1
B4	P0.6	_	ext_clk	_	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
B5	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
B6	XRES	_	_	_	_	_	Chip reset, active low
A7	VCCD	_	_	_	_	_	Regulated supply, connect to 1µF cap or 1.8V
C7	VDD	-	_	_	-	-	Supply, 1.8 - 5.5V
C4	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	-	-	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
C5	P1.1	ctb.oa0.inm	tcpwm2_n[1]	_	-	_	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
C6	P1.2	ctb.oa0.out	tcpwm3_p[1]	_	_	_	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm

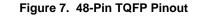
35-B	all CSP		Alte	rnate Functions	for Pins		Pin Description
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	- Fin Description
D7	P1.3	ctb.oa1.out	tcpwm3_n[1]	_	-	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm
D4	P1.4	ctb.oa1.inm	-	_	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb
D5	P1.5	ctb.oa1.inp	-	_	-	-	Port 1 Pin 5: gpio, lcd, csd, ctb
D6	P1.6	ctb.oa0.inp_alt	-	_	_	-	Port 1 Pin 6: gpio, lcd, csd
E7	P1.7/VR EF	ctb.oa1.inp_alt ext_vref	-	-	_	_	Port 1 Pin 7: gpio, lcd, csd, ext_ref

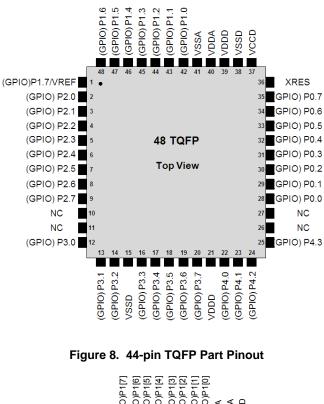
Descriptions of the Pin functions are as follows:

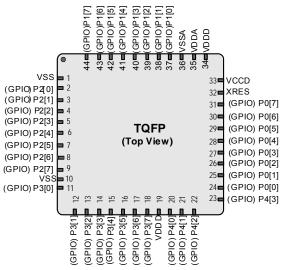
VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

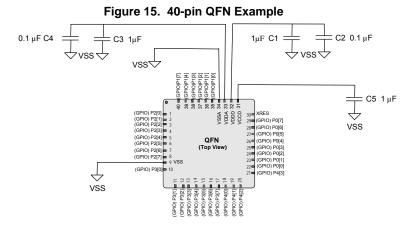
VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

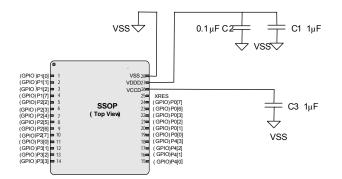

VSS: Ground pin.


VCCD: Regulated Digital supply (1.8 V ±5%).


Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following packages are supported: 48-pin TQFP, 44-pin TQFP, 40-pin QFN, and 28-pin SSOP.





Note It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (V_{DDA} , V_{DDD} , or V_{CCD})

is a significant percentage of the rated working voltage. VDDA must be equal to or higher than the VDDD supply when powering up.

Figure 16. 28-SSOP Example

Regulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that must be within the range of 1.71 V to 1.89 V (1.8 ±5%); note that this range needs to include power supply ripple too. In this mode, V_{CCD}, V_{DDA}, and V_{DDD} pins are all shorted together and bypassed. The internal regulator is disabled in firmware.

Development Support

The PSoC 4200 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
Deep Sleep	Mode, V _{DD} =	1.8 V to 3.6 V (Regulator on)					
SID31	IDD26	I ² C wakeup and WDT on.	-	1.3	-	μA	T = 25 °C
SID32	IDD27	I ² C wakeup and WDT on.	-	-	45	μA	T = 85 °C
Deep Sleep	Mode, V _{DD} =	3.6 V to 5.5 V					
SID34	IDD29	I ² C wakeup and WDT on	-	1.5	15	μA	Typ. at 25 °C. Max at 85 °C.
Deep Sleep	Mode, V _{DD} =	1.71 V to 1.89 V (Regulator bypassed)				•	
SID37	IDD32	I ² C wakeup and WDT on.	_	1.7	_	μA	T = 25 °C
SID38	IDD33	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep	Mode, +105	°C		•			
SID33Q	IDD28Q	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 to 1.89
SID34Q	IDD29Q	I ² C wakeup and WDT on.	-	-	180	μA	V _{DD} = 1.8 to 3.6
SID35Q	IDD30Q	I ² C wakeup and WDT on.	-	-	140	μA	V _{DD} = 3.6 to 5.5
Hibernate M	/lode, V _{DD} = 1	.8 V to 3.6 V (Regulator on)					
SID40	IDD35	GPIO and Reset active	_	150	-	nA	T = 25 °C
SID41	IDD36	GPIO and Reset active	-	-	1000	nA	T = 85 °C
Hibernate M	/lode, V _{DD} = 3	3.6 V to 5.5 V					
SID43	IDD38	GPIO and Reset active	_	150	-	nA	T = 25 °C
Hibernate M	/lode, V _{DD} = 1	.71 V to 1.89 V (Regulator bypassed)					
SID46	IDD41	GPIO and Reset active	_	150	-	nA	T = 25 °C
SID47	IDD42	GPIO and Reset active	-	-	1000	nA	T = 85 °C
Hibernate M	/lode, +105 °C						
SID42Q	IDD37Q	Regulator Off	_	-	19.4	μA	V _{DD} = 1.71 to 1.89
SID43Q	IDD38Q		-	-	17	μA	V _{DD} = 1.8 to 3.6
SID44Q	IDD39Q		-	-	16	μA	V _{DD} = 3.6 to 5.5
Stop Mode							
SID304	IDD43A	Stop Mode current; V _{DD} = 3.3 V	-	20	80	nA	Typ. at 25 °C. Max at 85 °C.
Stop Mode,	, +105 °C						
SID304Q	IDD43AQ	Stop Mode current; V _{DD} = 3.6 V	_	-	5645	nA	
XRES curre	ent						
SID307	IDD_XR	Supply current while XRES asserted	_	2	5	mA	

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71 \le V_{DD} \le 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	-	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	25	μs	24 MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate and Stop modes	-	-	2	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	_	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	_	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	_	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	
SID66	C _{IN}	Input capacitance	-	-	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	_	mV	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	_	-	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V _{DD} /Vss	-	-	100	μA	Guaranteed by characterization
SID69A	I _{TOT_GPIO}	Maximum Total Source or Sink Chip Current	-	-	200	mA	Guaranteed by characterization

Table 9. Comparator DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID90	Z _{CMP}	DC input impedance of comparator	35	-	_	MΩ	Guaranteed by characterization

Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	-	110	ns	50-mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50-mV overdrive
SID92		Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	-	-	15	μs	200-mV overdrive

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	-	-	8		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	-	_	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	_	-		Yes. Based on characterization
SID98	A_GAINERR	Gain error	-	_	±0.1	%	With external reference. Guaranteed by characterization
SID99	A_OFFSET	Input offset voltage	-	-	2	mV	Measured with 1-V V _{REF.} Guaranteed by characterization
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	_	V _{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V _{SS}	_	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	-	_	2.2	ΚΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	-	-	10	pF	Based on device characterization
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	V _{DD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID112A	A_DNL	Differential non linearity	-1	-	+2	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID112B	A_DNL	Differential non linearity	-1	_	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.

Table 12. SAR ADC DC Specifications (continued)

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID108	A_SAMP_1	Sample rate with external reference bypass cap	-	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}	_	-	500	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID113	A_THD	Total harmonic distortion	_	_	-65	dB	F _{IN} = 10 kHz.

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	-	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	_	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO. 25 °C	-	0.6	-	mA	32 × 4 segments. 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO. 25 °C	-	0.5	_	mA	32 × 4 segments. 50 Hz

Table 19. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 21. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID162	F _{UART}	Bit rate	1	-	1	Mbps

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID166	F _{SPI}	SPI operating frequency (master; 6X oversampling)	_	_	8	MHz

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	_	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

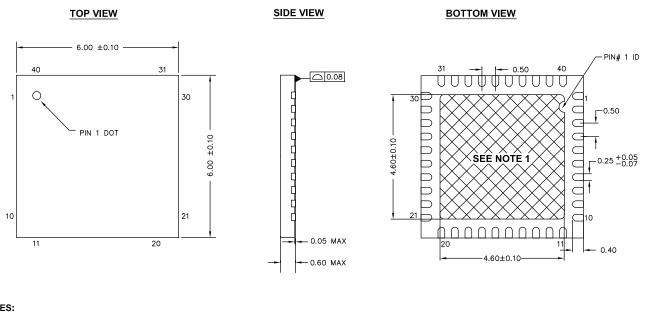
Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48		Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	-	55		Guaranteed by characterization

Table 38. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions							
Datapath p	Datapath performance													
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	-	_	48	MHz								
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	-	-	48	MHz								
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	-	-	48	MHz								
PLD Perfo	PLD Performance in UDB													
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-	_	48	MHz								
Clock to O	utput Performance													
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	-	15	-	ns								
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns								


Ordering Information

The PSoC 4200 part numbers and features are listed in the following table.

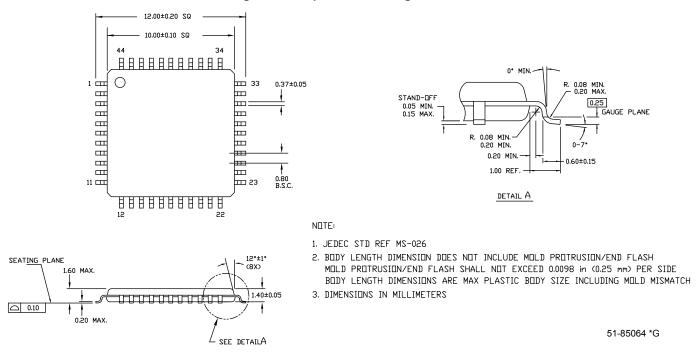
							Fea	ature	S						Pa	acka	ge	
Family	NdW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	35-WLCSP	40-QFN	44-TQFP	48-TQFP
	CY8C4244PVI-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVI-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24					
	CY8C4244PVQ-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24					
	CY8C4244FNI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	31		\checkmark			
	CY8C4244LQI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	36					
	CY8C4244LQQ-443	48	16	4	2	2			1 Msps	2	4	2	34					
	CY8C4244AXQ-443	48	16	4	2	2		\checkmark	1 Msps	2	4	2	36					
	CY8C4244AZI-443	48	16	4	2	2		\checkmark	1 Msps	2	4	2	36					
4200	CY8C4245AXI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
P	CY8C4245AXQ-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245AZI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245PVI-482	48	32	4	4	1	\checkmark		1 Msps	2	4	2	24	\checkmark				
	CY8C4245PVQ-482	48	32	4	4	1	\checkmark	\checkmark	1 Msps	2	4	2	24					
	CY8C4245FNI-483(T)	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	31					
	CY8C4245LQI-483	48	32	4	4	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXI-483	48	32	4	4	2		\checkmark	1 Msps	2	4	2	36					
	CY8C4245LQQ-483	48	32	4	4	2		\checkmark	1 Msps	2	4	2	34					
	CY8C4245AXQ-483	48	32	4	4	2		\checkmark	1 Msps	2	4	2	36					
	CY8C4245AZI-483	48	32	4	4	2		\checkmark	1 Msps	2	4	2	36					\checkmark

001-80659 *A

Figure 19. 40-pin QFN Package Outline

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD


2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 20. 44-pin TQFP Package Outline

Revision History

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*B	4108562	WKA	08/29/2013	Added clarifying note about the XRES pin in the Reset section. Updated UDB Array diagram. Added a link reference to the PSoC 4 TRM. Updated the footnote in Absolute Maximum Ratings. Updated Sleep Mode IDD specs in DC Specifications. Updated Comparator DC Specifications Updated SAR ADC AC Specifications Updated LCD Direct Drive DC Specifications Updated the number of GPIOs in Ordering Information.
*C	4568937	MKEA/ WKA	11/19/2014	Added More Information and PSoC Creator sections. Added 48-pin TQFP pin and package details. Added SID308A spec details. Updated Ordering Information.
*D	4617283	WKA	01/08/2015	Corrected typo in the ordering information table. Updated 28-pin SSOP package diagram.
*E	4643655	WKA	04/29/2015	Added 35 WLCSP pinout and package detail information. Updated CSD specifications.
*F	5287114	WKA	06/09/2016	Added reference to AN90071 in the More Information section. Updated Flash section with details of flash protection modes. Added notes in the Pinouts section. Updated 40-pin QFN and 28-pin SSOP pin diagrams. Added PSoC 4 Power Supply diagram. Updated the Bypass Capacitors column in the Power Supply table. Updated values for SID32, SID34, SID38, SID269, SID270, SID271. Added SID299A. Updated Comparator Specifications. Updated TCPWM Specifications. Updated TCPWM Specifications. Updated values for SID149, SID160, SID171. Updated Conditions for SID190. Added BID55. Removed Conditions for SID237. Added reference to PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints in the Packaging section.
*G	5327384	WKA	06/28/2016	Removed capacitor connection for Pin 15 in Figure 13.
*H	5702140	GNKK	04/19/2017	Updated the Cypress logo and copyright information.