

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245lqi-483t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

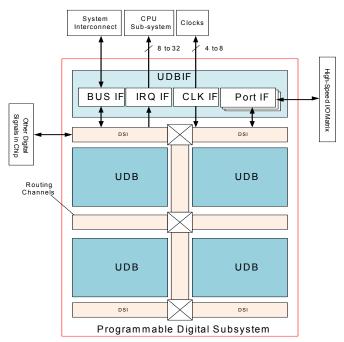
Two Opamps (CTBm Block)

PSoC 4200 has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the S/H circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.

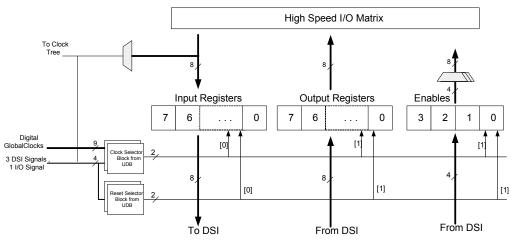
Low-power Comparators


PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.


Figure 5. UDB Array

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 6. Port Interface

Special Function Peripherals

LCD Segment Drive

PSoC 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

WLCSP Package Bootloader

The WLCSP package is supplied with an I²C Bootloader installed in flash. The bootloader is compatible with PSoC Creator bootloadable project files and has the following default settings:

- I²C SCL and SDA connected to port pins P4.0 and P4.1 respectively (external pull-up resistors required)
- I²C Slave mode, address 8, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator Bootloader Component default
- Occupies the bottom 4.5 KB of flash

For more information on this bootloader, see the following Cypress application note:

AN73854 - Introduction to Bootloaders

Note that a PSoC Creator bootloadable project must be associated with *.hex* and *.elf* files for a bootloader project that is configured for the target device. Bootloader *.hex* and *.elf* files can be found at http://www.cypress.com/?rID=78632. The factory-installed bootloader can be overwritten using JTAG or SWD programming.

PSoC[®] 4: PSoC 4200 Family Datasheet

4	4-TQFP	4	0-QFN	2	8-SSOP	48	3-TQFP		Alte	ernate Functions f	or Pins		Bin Description
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
24	P0.0	22	P0.0	19	P0.0	28	P0.0	comp1_inp	-	-	-	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
25	P0.1	23	P0.1	20	P0.1	29	P0.1	comp1_inn	-	-	-	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
26	P0.2	24	P0.2	21	P0.2	30	P0.2	comp2_inp	-	-	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
27	P0.3	25	P0.3	22	P0.3	31	P0.3	comp2_inn	-	-	-	-	Port 0 Pin 3: gpio, lcd, csd, comp
28	P0.4	26	P0.4	-	-	32	P0.4	-	-	scb1_uart_rx[1]	scb1_i2c_scl[1]	scb1_spi_mosi[1]	Port 0 Pin 4: gpio, lcd, csd, scb1
29	P0.5	27	P0.5	-	-	33	P0.5	-	-	scb1_uart_tx[1]	scb1_i2c_sda[1]	scb1_spi_miso[1]	Port 0 Pin 5: gpio, lcd, csd, scb1
30	P0.6	28	P0.6	23	P0.6	34	P0.6	-	ext_clk	-	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
31	P0.7	29	P0.7	24	P0.7	35	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
32	XRES	30	XRES	25	XRES	36	XRES	-	-	-	-	-	Chip reset, active low
33	VCCD	31	VCCD	26	VCCD	37	VCCD	-	-	-	_	-	Regulated supply, connect to 1µF cap or 1.8V
-	-	-	-	-	-	38	VSSD	-	-	-	-	-	Digital Ground
34	VDDD	32	VDDD	27	VDD	39	VDDD	-	-	-	-	-	Digital Supply, 1.8 - 5.5V
35	VDDA	33	VDDA	27	VDD	40	VDDA	_	-	_	-	-	Analog Supply, 1.8 - 5.5V, equal to VDDD
36	VSSA	34	VSSA	28	VSS	41	VSSA	-	-	-	-	-	Analog Ground
37	P1.0	35	P1.0	1	P1.0	42	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	-	-	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
38	P1.1	36	P1.1	2	P1.1	43	P1.1	ctb.oa0.inm	tcpwm2_n[1]	-	-	-	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
39	P1.2	37	P1.2	3	P1.2	44	P1.2	ctb.oa0.out	tcpwm3_p[1]	-	-	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm
40	P1.3	38	P1.3	-	-	45	P1.3	ctb.oa1.out	tcpwm3_n[1]	-	-	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm
41	P1.4	39	P1.4	-	-	46	P1.4	ctb.oa1.inm	-	-	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb
42	P1.5	-	-	-	-	47	P1.5	ctb.oa1.inp	-	-	-	-	Port 1 Pin 5: gpio, lcd, csd, ctb
43	P1.6	I	-	-	-	48	P1.6	ctb.oa0.inp_alt	-	-	-	-	Port 1 Pin 6: gpio, lcd, csd
44	P1.7/VREF	40	P1.7/VREF	4	P1.7/VREF	1	P1.7/VREF	ctb.oa1.inp_alt ext_vref	-	-	-	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref

Notes:

1. tcpwm_p and tcpwm_n refer to tcpwm non-inverted and inverted outputs respectively.

2. P3.2 and P3.3 are SWD pins after boot (reset).

The following is the pin-list for the PSoC 4200 (35-WLCSP).

35-Ba	all CSP	CSP Alternate Functions for Pins			Din Deparintian		
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
D3	P2.2	sarmux.2	_	_	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
E4	P2.3	sarmux.3	_	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
E5	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
E6	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
E3	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
E2	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
E1	P3.0	_	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
D2	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
D1	P3.2	_	tcpwm1_p[0]	_	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
B7	VSS	-	-	-	-	-	Ground
C1	P3.3	_	tcpwm1_n[0]	_	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
C2	P3.4	_	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
B1	P4.0	_	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
B2	P4.1	_	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
A2	P4.2	csd_c_mod	_	_	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
A1	P4.3	csd_c_sh_tank	_	_	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
C3	P0.0	comp1_inp	-	-	-	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
A5	P0.1	comp1_inn	-	-	-	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
A4	P0.2	comp2_inp	_	_	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
A3	P0.3	comp2_inn	_	_	_	_	Port 0 Pin 3: gpio, lcd, csd, comp
B3	P0.4	-	-	scb1_uart_rx[1]	scb1_i2c_scl[1]	scb1_spi_mosi[1]	Port 0 Pin 4: gpio, lcd, csd, scb1
A6	P0.5	_	_	scb1_uart_tx[1]	scb1_i2c_sda[1]	scb1_spi_miso[1]	Port 0 Pin 5: gpio, lcd, csd, scb1
B4	P0.6	_	ext_clk	_	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
B5	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
B6	XRES	_	_	_	_	_	Chip reset, active low
A7	VCCD	_	_	_	_	_	Regulated supply, connect to 1µF cap or 1.8V
C7	VDD	-	_	_	-	-	Supply, 1.8 - 5.5V
C4	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	-	-	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
C5	P1.1	ctb.oa0.inm	tcpwm2_n[1]	_	-	_	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
C6	P1.2	ctb.oa0.out	tcpwm3_p[1]	_	_	_	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm

35-B	all CSP		Alte	rnate Functions	for Pins		Pin Description
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	- Fin Description
D7	P1.3	ctb.oa1.out	tcpwm3_n[1]	_	-	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm
D4	P1.4	ctb.oa1.inm	-	_	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb
D5	P1.5	ctb.oa1.inp	-	_	-	-	Port 1 Pin 5: gpio, lcd, csd, ctb
D6	P1.6	ctb.oa0.inp_alt	-	_	_	-	Port 1 Pin 6: gpio, lcd, csd
E7	P1.7/VR EF	ctb.oa1.inp_alt ext_vref	-	-	_	_	Port 1 Pin 7: gpio, lcd, csd, ext_ref

Descriptions of the Pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following packages are supported: 48-pin TQFP, 44-pin TQFP, 40-pin QFN, and 28-pin SSOP.

Figure 9. 40-Pin QFN Pinout

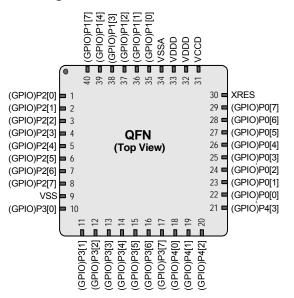
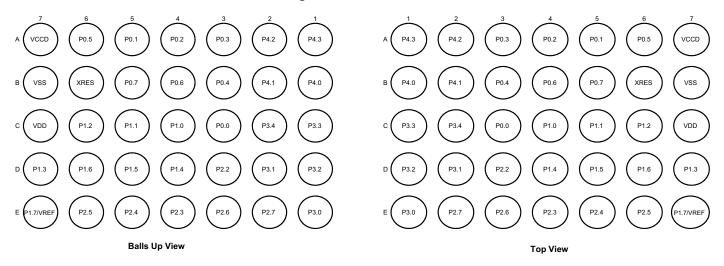
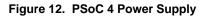
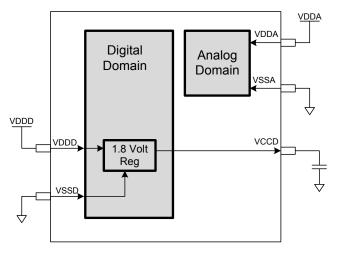



Figure 10. 35-Ball WLCSP




CYPRESS

Power

The following power system diagrams show the minimum set of power supply pins as implemented for the PSoC 4200. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4200 supplies the internal logic and the V_{CCD} output of PSoC 4200 must be bypassed to ground via an external capacitor (in the range of 1 μ F to 1.6 μ F; X5R ceramic or better).

 V_{DDA} and V_{DDD} must be shorted together; the grounds, V_{SSA} and V_{SS} must also be shorted together. Bypass capacitors must be used from V_{DDD} to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μF range in parallel with a smaller capacitor (0.1 μF for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 13. 48-TQFP Package Example

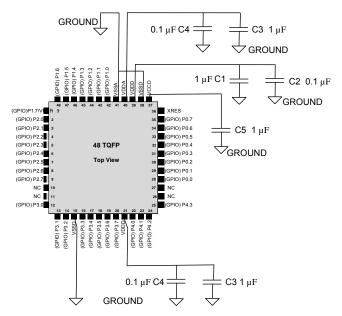
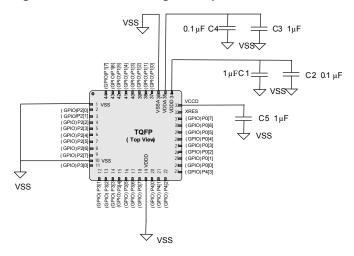



Figure 14. 44-TQFP Package Example

Power Supply	Bypass Capacitors
$V_{DDD} - V_{SS}$	0.1- μ F ceramic at each pin (C2, C6) plus bulk capacitor 1 μ F to 10 μ F (C1). Total capacitance may be greater than 10 μ F.
V _{DDA} –V _{SSA}	0.1- μ F ceramic at pin (C4). Additional 1 μ F to 10 μ F (C3) bulk capacitor. Total capacitance may be greater than 10 μ F.
$V_{CCD} - V_{SS}$	1-µF ceramic capacitor at the VCCD pin (C5)
V _{REF} –V _{SSA} (optional)	The internal bandgap may be bypassed with a 1-μF to 10-μF capacitor. Total capacitance may be greater than 10 μF.

Development Support

The PSoC 4200 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	_	
SID269	I _{DD_HI}	Power = high	-	1100	1850	μA	
SID270	IDD MED	Power = medium	-	550	950	μA	
SID271	I _{DD_LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	_	
SID272	GBW_HI	Power = high	6	-	-	MHz	
SID273	GBW_MED	Power = medium	4	-	-	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	-	-	-	
SID275	I _{OUT_MAX_HI}	Power = high	10	-	-	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	-	-	mA	
SID277	I _{OUT_MAX_LO}	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	I _{OUT_MAX_HI}	Power = high	4	-	-	mA	
SID279	I _{OUT_MAX_MID}	Power = medium	4	-	-	mA	
SID280	I _{OUT_MAX_LO}	Power = low	-	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA-0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA-0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	-		
SID283	V _{OUT_1}	Power = high, Iload=10 mA	0.5	-	VDDA – 0.5	V	
SID284	V _{OUT_2}	Power = high, Iload=1 mA	0.2	-	VDDA-0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	-	VDDA-0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	VDDA-0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode. TA \leq 85 °C
SID290Q	VOS_DR_TR	Offset voltage drift, trimmed	15	±3	15	µV/°C	High mode. TA \leq 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	µV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	µV/°C	Low mode
SID291	CMRR	DC	70	80	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	_	dB	V _{DDD} = 3.6 V
	Noise		-	-	_	_	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	-	μVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	_	72	_	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	-	28	-	nV/rtHz	

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID296	V _{N4}	Input referred, 100kHz, power = high	_	15	-	nV/rtHz	
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, V _{DDA} \geq 2.7 V	6	-	-	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	_	300	-	μs	
SID299A	OL_GAIN	Open Loop Gain	-	90	-	dB	Guaranteed by design
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	-	-	-		
SID300	T _{PD1}	Response time; power = high	_	150	-	ns	
SID301	T _{PD2}	Response time; power = medium	_	400	-	ns	
SID302	T _{PD3}	Response time; power = low	-	2000	-	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Comparatorr

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	_	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	_	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	_	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	-	6	28	μA	Guaranteed by characterization

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	V _{DD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID112A	A_DNL	Differential non linearity	-1	-	+2	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID112B	A_DNL	Differential non linearity	-1	_	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.

Table 12. SAR ADC DC Specifications (continued)

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID108	A_SAMP_1	Sample rate with external reference bypass cap	-	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}	_	-	500	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID113	A_THD	Total harmonic distortion	_	_	-65	dB	F _{IN} = 10 kHz.

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (IPOR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by charac- terization
SID187	VIPORHYST	Hysteresis	15	-	200	mV	Guaranteed by charac- terization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	_	_		Full functionality between 1.71 V and BOD trip voltage is guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by charac- terization
BID55	Svdd	Maximum power supply ramp rate	-	-	67	kV/sec	

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	-	-	100	μA	Guaranteed by characterization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	-	-	1	μs	Guaranteed by characterization

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	_	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	FILOTRIM1 32 kHz trimmed frequency		15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48		Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	-	55		Guaranteed by characterization

Table 38. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p							
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	-	_	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	-	-	48	MHz	
SID251	F _{MAX_CRC}	X_CRC Max frequency of 16-bit CRC/PRS in a UDB pair		-	48	MHz	
PLD Perfo	rmance in UDB						
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-	_	48	MHz	
Clock to O							
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	-	15	-	ns	
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns	

Table 39. Block Specs

т *						1
T _{WS48} *	Number of wait states at 48 MHz	1	-	-		CPU execution from Flash. Guaranteed by characterization
T _{WS24} *	Number of wait states at 24 MHz	0	-	_		CPU execution from Flash. Guaranteed by characterization
V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by characterization
T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	. Guaranteed by design
Т	REFSAR	/REFSAR Trimmed internal reference to SAR CLKSWITCH Clock switching from clk1 to clk2 in	/REFSAR Trimmed internal reference to SAR -1 /CLKSWITCH Clock switching from clk1 to clk2 in clk1 periods 3	/REFSAR Trimmed internal reference to SAR -1 - /REFSAR Clock switching from clk1 to clk2 in clk1 periods 3 -	/REFSAR Trimmed internal reference to SAR -1 - +1 /REFSAR Clock switching from clk1 to clk2 in clk1 periods 3 - 4	Image: Number of wait states at 24 MHz VREFSAR Trimmed internal reference to SAR -1 - +1 % VREFSAR Clock switching from clk1 to clk2 in clk1 periods 3 - 4 Periods

Table 40. UDB Port Adaptor Specifications

(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V V_{DDIO} and $V_{\text{DDD}})$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID263	T _{LCLKDO}	LCLK to output delay	_	-	18	ns	
SID264	T _{DINLCLK}	Input setup time to LCLCK rising edge	_	-	7	ns	
SID265	T _{DINLCLKHLD}	Input hold time from LCLK rising edge	5	-	_	ns	
SID266	T _{LCLKHIZ}	LCLK to output tristated	_	-	28	ns	
SID267	T _{FLCLK}	LCLK frequency	_	-	33	MHz	
SID268	T _{LCLKDUTY}	LCLK duty cycle (percentage high)	40	-	60	%	

Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-XYZ where the fields are defined as follows.

Example	- CY8C + A + C + C + C + C + C + C + C + C +
	Cypress Prefix
4: PSoC 4	Architecture
2: 4200 Family	Family within Architecture
4: 48 MHz	Speed Grade
5: 32 KB	Flash Capacity ————————————————————————————————————
AX: TQFP	Package Code
I: Industrial	Temperature Range
	Attributes Set

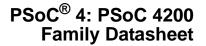
The Field Values are listed in the following table.

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
А	Family within archi-	1	4100 Family
	tecture	2	4200 Family
В	CPU Speed	2	24 MHz
В	Ci O Speed	4	48 MHz
С	Flash Capacity	4	16 KB
Ŭ		5	32 KB
		AX, AZ	TQFP
DE	Package Code	LQ	QFN
	I ackage code	PV	SSOP
		FN	WLCSP
F	Temperature Range	I	Industrial
	Temperature Mange	Q	Extended Industrial
XYZ	Attributes Code	000-999	Code of feature set in specific family

Packaging

Table 42. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	105	°C
TJ	Operating junction temperature		-40	-	125	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	_	°C/Watt
T _{JA}	Package θ_{JA} (35-ball WLCSP)		-	28.00	-	°C/Watt
T _{JA}	Package θ_{JA} (40-pin QFN)		-	15.34	_	°C/Watt
T _{JA}	Package θ_{JA} (44-pin TQFP)		-	57.16	_	°C/Watt
T _{JA}	Package θ_{JA} (48-pin TQFP)		-	67.30	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	26.28	_	°C/Watt
T _{JC}	Package θ_{JC} (35-ball WLCSP)		-	00.40	_	°C/Watt
T _{JC}	Package θ_{JC} (40-pin QFN)		-	2.50	-	°C/Watt
T _{JC}	Package θ_{JC} (44-pin TQFP)		-	17.47	_	°C/Watt
T _{JC}	Package θ_{JC} (48-pin TQFP)		-	27.60	_	°C/Watt


Table 43. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds
35-ball WLCSP	260 °C	30 seconds
40-pin QFN	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin TQFP	260 °C	30 seconds

Table 44. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3
35-ball WLCSP	MSL 3
40-pin QFN	MSL 3
44-pin TQFP	MSL 3
48-pin TQFP	MSL 3

PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents.

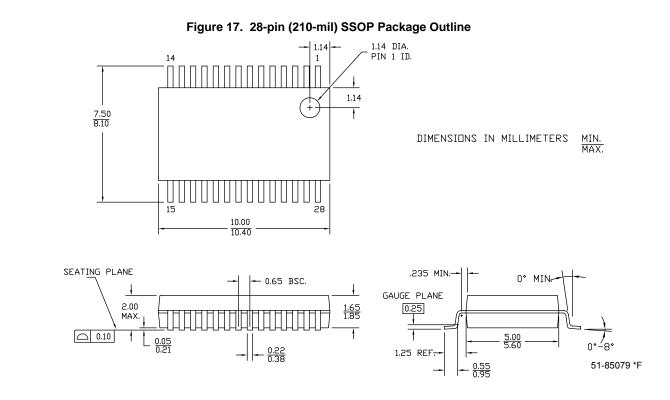
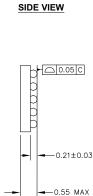


Figure 18. 35-ball WLCSP Package Outline

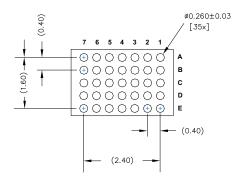
1 2 3 4 5 6 7

PIN 1 DOT

3.23±0.025


A O

в

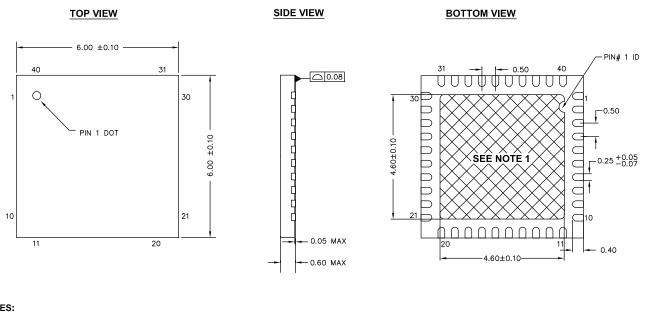

С

D

Е

NOTES:

1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18


2.10±0.025

2. ALL DIMENSIONS ARE IN MILLIMETERS

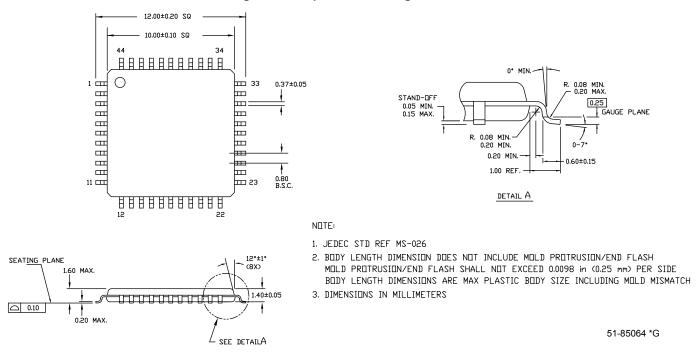
001-93741 **

001-80659 *A

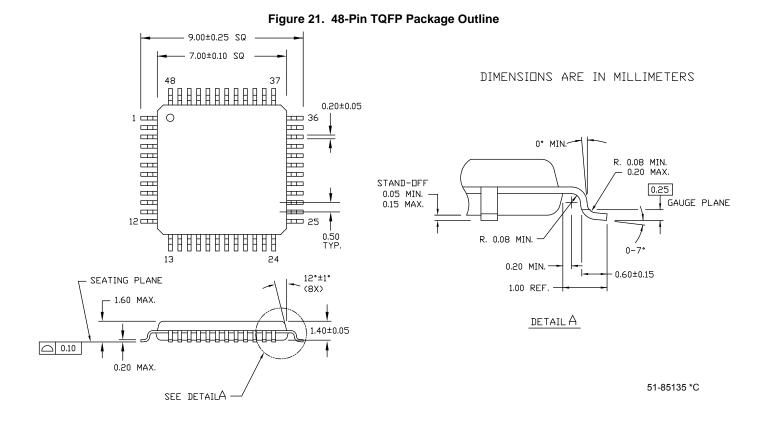
Figure 19. 40-pin QFN Package Outline

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD


2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg


4. ALL DIMENSIONS ARE IN MILLIMETERS

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 20. 44-pin TQFP Package Outline

Acronyms

Table 45. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 45. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
IIR	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD