

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245pvi-482

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. Block Diagram

The PSoC 4200 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4200 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, with very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4200 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200 allows the customer to make.

Fixed Function Digital

Timer/Counter/PWM Block (TCPWM)

The TCPWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4200 has two SCBs, which can each implement an I^2C , UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. The required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on VDD, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, refer to the UM10204 I2C bus specification and user manual (the latest revision is available at www.nxp.com).

PSoC 4200 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-Mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do not intervene but a Master that has just become activated may start an Arbitration cycle.

■ When the SCB is in I²C slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

PSoC 4200 has 36 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4200 since it has 4.5 ports).

The following is the pin-list for the PSoC 4200 (35-WLCSP).

35-Ba	all CSP		Alte	ernate Functions	for Pins		Bin Description
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	
D3	P2.2	sarmux.2	_	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
E4	P2.3	sarmux.3	_	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
E5	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
E6	P2.5	sarmux.5	tcpwm0_n[1]	-	-	-	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
E3	P2.6	sarmux.6	tcpwm1_p[1]	-	-	-	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
E2	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
E1	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
D2	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
D1	P3.2	-	tcpwm1_p[0]	-	swd_io[0]	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
B7	VSS	-	_	-	-	-	Ground
C1	P3.3	-	tcpwm1_n[0]	-	swd_clk[0]	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
C2	P3.4	-	tcpwm2_p[0]	-	-	scb1_spi_ssel_1	Port 3 Pin 4: gpio, lcd, csd, pwm, scb1
B1	P4.0	-	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
B2	P4.1	-	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
A2	P4.2	csd_c_mod	_	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
A1	P4.3	csd_c_sh_tank	_	-	-	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
C3	P0.0	comp1_inp	_	-	-	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
A5	P0.1	comp1_inn	_	-	-	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
A4	P0.2	comp2_inp	_	-	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
A3	P0.3	comp2_inn	-	-	-	-	Port 0 Pin 3: gpio, lcd, csd, comp
B3	P0.4	-	-	scb1_uart_rx[1]	scb1_i2c_scl[1]	scb1_spi_mosi[1]	Port 0 Pin 4: gpio, lcd, csd, scb1
A6	P0.5	_	_	scb1_uart_tx[1]	scb1_i2c_sda[1]	scb1_spi_miso[1]	Port 0 Pin 5: gpio, lcd, csd, scb1
B4	P0.6	-	ext_clk	-	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
B5	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
B6	XRES	-	-	-	-	-	Chip reset, active low
A7	VCCD	-	-	-	-	-	Regulated supply, connect to 1µF cap or 1.8V
C7	VDD	-	-	-	-	-	Supply, 1.8 - 5.5V
C4	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	_	_	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
C5	P1.1	ctb.oa0.inm	tcpwm2_n[1]	-	-	-	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
C6	P1.2	ctb.oa0.out	tcpwm3_p[1]	-	-	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm

35-Ball	I CSP		Alte	rnate Functions	for Pins		Pin Description			
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4				
D7	P1.3	ctb.oa1.out	tcpwm3_n[1]	_	_	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm			
D4	P1.4	ctb.oa1.inm	_	_	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb			
D5	P1.5	ctb.oa1.inp	_	_	_	-	Port 1 Pin 5: gpio, lcd, csd, ctb			
D6	P1.6	ctb.oa0.inp_alt	-	_	-	-	Port 1 Pin 6: gpio, lcd, csd			
E7 P	P1.7/VR EF	ctb.oa1.inp_alt ext_vref	-	-	-	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref			

Descriptions of the Pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following packages are supported: 48-pin TQFP, 44-pin TQFP, 40-pin QFN, and 28-pin SSOP.

Figure 9. 40-Pin QFN Pinout

Figure 10. 35-Ball WLCSP

CYPRESS

Power

The following power system diagrams show the minimum set of power supply pins as implemented for the PSoC 4200. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200 family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4200 supplies the internal logic and the V_{CCD} output of PSoC 4200 must be bypassed to ground via an external capacitor (in the range of 1 μ F to 1.6 μ F; X5R ceramic or better).

 V_{DDA} and V_{DDD} must be shorted together; the grounds, V_{SSA} and V_{SS} must also be shorted together. Bypass capacitors must be used from V_{DDD} to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μF range in parallel with a smaller capacitor (0.1 μF for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 13. 48-TQFP Package Example

Figure 14. 44-TQFP Package Example

Power Supply	Bypass Capacitors						
$V_{DDD} - V_{SS}$	0.1- μ F ceramic at each pin (C2, C6) plus bulk capacitor 1 μ F to 10 μ F (C1). Total capacitance may be greater than 10 μ F.						
V _{DDA} -V _{SSA}	0.1- μ F ceramic at pin (C4). Additional 1 μ F to 10 μ F (C3) bulk capacitor. Total capacitance may be greater than 10 μ F.						
$V_{CCD} - V_{SS}$	1-μF ceramic capacitor at the VCCD pin (C5)						
V _{REF} –V _{SSA} (optional)	The internal bandgap may be bypassed with a 1-µF to 10-µF capacitor. Total capacitance may be greater than 10 µF.						

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	-	
SID269	I _{DD HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD MED}	Power = medium	-	550	950	μA	
SID271	I _{DD LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	_	
SID272	GBW_HI	Power = high	6	-	-	MHz	
SID273	GBW_MED	Power = medium	4	-	-	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT MAX}	$V_{DDA} \ge 2.7$ V, 500 mV from rail	-	-	-	_	
SID275	I _{OUT MAX HI}	Power = high	10	-	-	mA	
SID276	I _{OUT MAX MID}	Power = medium	10	-	-	mA	
SID277	I _{OUT_MAX_LO}	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	_	_	_	
SID278	I _{OUT MAX HI}	Power = high	4	-	-	mA	
SID279	I _{OUT_MAX_MID}	Power = medium	4	-	-	mA	
SID280	I _{OUT_MAX_LO}	Power = low	-	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA – 0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA-0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	-		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	-	VDDA – 0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	-	VDDA-0.2	V	
SID285	V _{OUT_3}	Power = medium, Iload=1 mA	0.2	-	VDDA-0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	VDDA-0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode. TA ≤ 85 °C
SID290Q	VOS_DR_TR	Offset voltage drift, trimmed	15	±3	15	µV/°C	High mode. TA ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Low mode
SID291	CMRR	DC	70	80	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V
	Noise		-	-	-	-	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	-	µVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	-	72	-	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	-	28	-	nV/rtHz	

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID296	V _{N4}	Input referred, 100kHz, power = high	-	15	-	nV/rtHz	
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge$ 2.7 V	6	-	_	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	_	300	_	μs	
SID299A	OL_GAIN	Open Loop Gain	-	90	-	dB	Guaranteed by design
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	_	-	_		
SID300	T _{PD1}	Response time; power = high	_	150	-	ns	
SID301	T _{PD2}	Response time; power = medium	-	400	_	ns	
SID302	T _{PD3}	Response time; power = low	-	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Comparatorr

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	_	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	_	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V _{DD} -1.	_	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	_	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	_	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	_	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	_	6	28	μÂ	Guaranteed by characterization

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID111	A_INL	Integral non linearity	-1.7	_	+2	LSB	V _{DD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID111B	A_INL	Integral non linearity	-1.5	_	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID112A	A_DNL	Differential non linearity	-1	_	+2	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID112B	A_DNL	Differential non linearity	-1	_	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.

Table 12. SAR ADC DC Specifications (continued)

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID108	A_SAMP_1	Sample rate with external reference bypass cap	_	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}	-	Ι	500	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	_	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	_	dB	F _{IN} = 10 kHz
SID113	A_THD	Total harmonic distortion	_	-	-65	dB	F _{IN} = 10 kHz.

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (IPOR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by charac- terization
SID187	VIPORHYST	Hysteresis	15	-	200	mV	Guaranteed by charac- terization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	VFALLPPOR	BOD trip voltage in active and sleep modes	1.64	1	_	V	Full functionality between 1.71 V and BOD trip voltage is guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by charac- terization
BID55	Svdd	Maximum power supply ramp rate	-	-	67	kV/sec	

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	_	100	μA	Guaranteed by characterization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	-	-	1	μs	Guaranteed by characterization

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \leq V_{DD} \leq 3.3~V$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	_	_	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	_	-	±2	%	±3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	-	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	_	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	-	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	_	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	_	0.3	1.05	μA	Guaranteed by Characterization
SID233	I _{ILOLEAK}	ILO leakage current	-	2	15	nA	Guaranteed by Design

Table 39. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID256*	T _{WS48} *	Number of wait states at 48 MHz	1	-	-		CPU execution from Flash. Guaranteed by characterization
SID257	T _{WS24} *	Number of wait states at 24 MHz	0	-	-		CPU execution from Flash. Guaranteed by characterization
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by characterization
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	. Guaranteed by design
* Tws48 and T	Tws24 are guaranteed b	by Design					

Table 40. UDB Port Adaptor Specifications

(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V V_{DDIO} and $V_{\text{DDD}})$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID263	T _{LCLKDO}	LCLK to output delay	-	-	18	ns	
SID264	T _{DINLCLK}	Input setup time to LCLCK rising edge	_	-	7	ns	
SID265	T _{DINLCLKHLD}	Input hold time from LCLK rising edge	5	-	-	ns	
SID266	T _{LCLKHIZ}	LCLK to output tristated	-	-	28	ns	
SID267	T _{FLCLK}	LCLK frequency	-	-	33	MHz	
SID268	T _{LCLKDUTY}	LCLK duty cycle (percentage high)	40	-	60	%	

Ordering Information

The PSoC 4200 part numbers and features are listed in the following table.

Table 41.	PSoC 4200	Family	Ordering	Information
-----------	-----------	--------	----------	-------------

		Features										Package						
Family	NGM	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	35-WLCSP	40-QFN	44-TQFP	48-TQFP
	CY8C4244PVI-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24					
	CY8C4244PVI-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-432	48	16	4	2	1	-	-	1 Msps	2	4	2	24	\checkmark				
	CY8C4244PVQ-442	48	16	4	2	1	\checkmark	\checkmark	1 Msps	2	4	2	24	\checkmark				
	CY8C4244FNI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	31		\checkmark			
	CY8C4244LQI-443	48	16	4	2	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXI-443	48	16	4	2	2			1 Msps	2	4	2	36				\checkmark	
	CY8C4244LQQ-443	48	16	4	2	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4244AXQ-443	48	16	4	2	2			1 Msps	2	4	2	36				\checkmark	
-	CY8C4244AZI-443	48	16	4	2	2			1 Msps	2	4	2	36					
:200	CY8C4245AXI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
4	CY8C4245AXQ-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245AZI-473	48	32	4	4	2	-	-	1 Msps	2	4	2	36					
	CY8C4245PVI-482	48	32	4	4	1			1 Msps	2	4	2	24					
	CY8C4245PVQ-482	48	32	4	4	1			1 Msps	2	4	2	24					
	CY8C4245FNI-483(T)	48	32	4	4	2			1 Msps	2	4	2	31		\checkmark			
	CY8C4245LQI-483	48	32	4	4	2			1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXI-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36				\checkmark	
	CY8C4245LQQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	34			\checkmark		
	CY8C4245AXQ-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					
	CY8C4245AZI-483	48	32	4	4	2	\checkmark	\checkmark	1 Msps	2	4	2	36					

Packaging

Table 42. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	105	°C
TJ	Operating junction temperature		-40	-	125	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/Watt
T _{JA}	Package θ_{JA} (35-ball WLCSP)		-	28.00	-	°C/Watt
T _{JA}	Package θ_{JA} (40-pin QFN)		-	15.34	-	°C/Watt
T _{JA}	Package θ_{JA} (44-pin TQFP)		-	57.16	-	°C/Watt
T _{JA}	Package θ_{JA} (48-pin TQFP)		-	67.30	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	26.28	-	°C/Watt
T _{JC}	Package θ_{JC} (35-ball WLCSP)		-	00.40	-	°C/Watt
T _{JC}	Package θ_{JC} (40-pin QFN)		-	2.50	_	°C/Watt
T _{JC}	Package θ_{JC} (44-pin TQFP)		-	17.47	_	°C/Watt
T _{JC}	Package θ_{JC} (48-pin TQFP)		-	27.60	_	°C/Watt

Table 43. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds
35-ball WLCSP	260 °C	30 seconds
40-pin QFN	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin TQFP	260 °C	30 seconds

Table 44. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3
35-ball WLCSP	MSL 3
40-pin QFN	MSL 3
44-pin TQFP	MSL 3
48-pin TQFP	MSL 3

PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents.

Figure 18. 35-ball WLCSP Package Outline

1 2 3 4 5 6 7

PIN 1 DOT

3.23±0.025

A O

в

С

D

Е

NOTES:

1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2.10±0.025

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-93741 **

Acronyms

Table 45. Acronyms Used in this Document

Acronym	Description			
abus	analog local bus			
ADC	analog-to-digital converter			
AG	analog global			
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus			
ALU	arithmetic logic unit			
AMUXBUS	analog multiplexer bus			
API	application programming interface			
APSR	application program status register			
ARM®	advanced RISC machine, a CPU architecture			
ATM	automatic thump mode			
BW	bandwidth			
CAN	Controller Area Network, a communications protocol			
CMRR	common-mode rejection ratio			
CPU	central processing unit			
CRC	cyclic redundancy check, an error-checking protocol			
DAC	digital-to-analog converter, see also IDAC, VDAC			
DFB	digital filter block			
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.			
DMIPS	Dhrystone million instructions per second			
DMA	direct memory access, see also TD			
DNL	differential nonlinearity, see also INL			
DNU	do not use			
DR	port write data registers			
DSI	digital system interconnect			
DWT	data watchpoint and trace			
ECC	error correcting code			
ECO	external crystal oscillator			
EEPROM	electrically erasable programmable read-only memory			
EMI	electromagnetic interference			
EMIF	external memory interface			
EOC	end of conversion			
EOF	end of frame			
EPSR	execution program status register			
ESD	electrostatic discharge			

Table 45. Acronyms Used in this Document (continued)

Acronym	Description			
ETM	embedded trace macrocell			
FIR	finite impulse response, see also IIR			
FPB	flash patch and breakpoint			
FS	full-speed			
GPIO	general-purpose input/output, applies to a PSoC pin			
HVI	high-voltage interrupt, see also LVI, LVD			
IC	integrated circuit			
IDAC	current DAC, see also DAC, VDAC			
IDE	integrated development environment			
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol			
IIR	infinite impulse response, see also FIR			
ILO	internal low-speed oscillator, see also IMO			
IMO	internal main oscillator, see also ILO			
INL	integral nonlinearity, see also DNL			
I/O	input/output, see also GPIO, DIO, SIO, USBIO			
IPOR	initial power-on reset			
IPSR	interrupt program status register			
IRQ	interrupt request			
ITM	instrumentation trace macrocell			
LCD	liquid crystal display			
LIN	Local Interconnect Network, a communications protocol.			
LR	link register			
LUT	lookup table			
LVD	low-voltage detect, see also LVI			
LVI	low-voltage interrupt, see also HVI			
LVTTL	low-voltage transistor-transistor logic			
MAC	multiply-accumulate			
MCU	microcontroller unit			
MISO	master-in slave-out			
NC	no connect			
NMI	nonmaskable interrupt			
NRZ	non-return-to-zero			
NVIC	nested vectored interrupt controller			
NVL	nonvolatile latch, see also WOL			
opamp	operational amplifier			
PAL	programmable array logic, see also PLD			

Acronym	Description				
PC	program counter				
РСВ	printed circuit board				
PGA	programmable gain amplifier				
PHUB	peripheral hub				
PHY	physical layer				
PICU	port interrupt control unit				
PLA	programmable logic array				
PLD	programmable logic device, see also PAL				
PLL	phase-locked loop				
PMDD	package material declaration data sheet				
POR	power-on reset				
PRES	precise power-on reset				
PRS	pseudo random sequence				
PS	port read data register				
PSoC®	Programmable System-on-Chip™				
PSRR	power supply rejection ratio				
PWM	pulse-width modulator				
RAM	random-access memory				
RISC	reduced-instruction-set computing				
RMS	root-mean-square				
RTC	real-time clock				
RTL	register transfer language				
RTR	remote transmission request				
RX	receive				
SAR	successive approximation register				
SC/CT	switched capacitor/continuous time				
SCL	I ² C serial clock				
SDA	l ² C serial data				
S/H	sample and hold				
SINAD	signal to noise and distortion ratio				
SIO	special input/output, GPIO with advanced features. See GPIO.				
SOC	start of conversion				
SOF	start of frame				
SPI	Serial Peripheral Interface, a communications protocol				
SR	slew rate				
SRAM	static random access memory				
SRES	software reset				
SWD	serial wire debug, a test protocol				

Table 45. Acronyms Used in this Document (continued)

Acronym Description SWV single-wire viewer TD transaction descriptor, see also DMA THD total harmonic distortion TIA transimpedance amplifier TRM technical reference manual TTL transistor-transistor logic ТΧ transmit UART Universal Asynchronous Transmitter Receiver, a communications protocol UDB universal digital block USB Universal Serial Bus USBIO USB input/output, PSoC pins used to connect to a USB port VDAC voltage DAC, see also DAC, IDAC WDT watchdog timer WOL write once latch, see also NVL WRES watchdog timer reset XRES external reset I/O pin **XTAL** crystal

Table 45. Acronyms Used in this Document (continued)

Document Conventions

Units of Measure

Table 46. Units of Measure

Symbol	Unit of Measure			
°C	degrees Celsius			
dB	decibel			
fF	femto farad			
Hz	hertz			
KB	1024 bytes			
kbps	kilobits per second			
Khr	kilohour			
kHz	kilohertz			
kΩ	kilo ohm			
ksps	kilosamples per second			
LSB	least significant bit			
Mbps	megabits per second			
MHz	megahertz			
MΩ	mega-ohm			
Msps	megasamples per second			
μA	microampere			
μF	microfarad			
μH	microhenry			
μs	microsecond			
μV	microvolt			
μW	microwatt			
mA	milliampere			
ms	millisecond			
mV	millivolt			
nA	nanoampere			
ns	nanosecond			
nV	nanovolt			
Ω	ohm			
pF	picofarad			
ppm	parts per million			
ps	picosecond			
s	second			
sps	samples per second			
sqrtHz	square root of hertz			
V	volt			

Revision History

Description Title: PSoC [®] 4: PSoC 4200 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-87197							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
*B	4108562	WKA	08/29/2013	Added clarifying note about the XRES pin in the Reset section. Updated UDB Array diagram. Added a link reference to the PSoC 4 TRM. Updated the footnote in Absolute Maximum Ratings. Updated Sleep Mode IDD specs in DC Specifications. Updated Comparator DC Specifications Updated SAR ADC AC Specifications Updated LCD Direct Drive DC Specifications Updated the number of GPIOs in Ordering Information.			
*C	4568937	MKEA/ WKA	11/19/2014	Added More Information and PSoC Creator sections. Added 48-pin TQFP pin and package details. Added SID308A spec details. Updated Ordering Information.			
*D	4617283	WKA	01/08/2015	Corrected typo in the ordering information table. Updated 28-pin SSOP package diagram.			
*E	4643655	WKA	04/29/2015	Added 35 WLCSP pinout and package detail information. Updated CSD specifications.			
*F	5287114	WKA	06/09/2016	Added reference to AN90071 in the More Information section. Updated Flash section with details of flash protection modes. Added notes in the Pinouts section. Updated 40-pin QFN and 28-pin SSOP pin diagrams. Added PSoC 4 Power Supply diagram. Updated the Bypass Capacitors column in the Power Supply table. Updated values for SID32, SID34, SID38, SID269, SID270, SID271. Added SID299A. Updated Comparator Specifications. Updated TCPWM Specifications. Updated values for SID149, SID160, SID171. Updated Conditions for SID190. Added BID55. Removed Conditions for SID237. Added reference to PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints in the Packaging section.			
*G	5327384	WKA	06/28/2016	Removed capacitor connection for Pin 15 in Figure 13.			
*H	5702140	GNKK	04/19/2017	Updated the Cypress logo and copyright information.			