E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	112MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k142uft0vllt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Bloc	ek diagra	.m		
2	Feat	ure com	parison		
3	Orde	ering par	ts	7	
	3.1	Determ	ining valid c	orderable parts7	
	3.2	Orderin	ng informatio	on8	
4	Gen	eral		9	
	4.1	Absolu	te maximum	ı ratings9	
	4.2	Voltage	e and current	t operating requirements1	0
	4.3	Therma	al operating of	characteristics1	1
	4.4	Power a	and ground p	pins1	2
	4.5	LVR, L	VD and PO	R operating requirements1	3
	4.6	Power	mode transiti	ion operating behaviors1	4
	4.7	Power of	consumption	11	5
		4.7.1	Modes con	figuration1	8
	4.8	ESD ha	undling rating	gs1	8
	4.9	EMC ra	adiated emis	sions operating behaviors1	8
5	I/O	paramete	ers	1	8
	5.1	AC elec	ctrical charac	cteristics1	8
	5.2	Genera	l AC specific	cations1	9
	5.3	DC elec	ctrical specif	fications at 3.3 V Range1	9
	5.4	DC elec	ctrical specif	fications at 5.0 V Range2	0
	5.5	AC elec	ctrical specif	fications at 3.3 V range 2	1
	5.6	AC elec	ctrical specif	fications at 5 V range2	2
	5.7	Standar	d input pin c	capacitance2	2
	5.8	Device	clock specif	ications2	2
6	Peri	pheral of	perating requ	irements and behaviors2	3
	6.1	System	modules	2	3
	6.2	Clock i	nterface mod	dules2	3
		6.2.1	External Sy	ystem Oscillator electrical specifications2	3
		6.2.2	External Sy	ystem Oscillator frequency specifications . 2.	5
		6.2.3	System Clo	ock Generation (SCG) specifications2	6
			6.2.3.1	Fast internal RC Oscillator (FIRC)	
				electrical specifications24	6
			6.2.3.2	Slow internal RC oscillator (SIRC)	
				electrical specifications	6
		6.2.4	Low Power	r Oscillator (LPO) electrical specifications	
					7

		6.2.5	SPLL electric	rical specifications2	27
	6.3	Memor	y and memor	ry interfaces2	27
		6.3.1	Flash memo	ory module (FTFC) electrical	
			specificatio	ns 2	27
			6.3.1.1	Flash timing specifications —	
				commands 2	27
			6.3.1.2	Reliability specifications2	29
		6.3.2	QuadSPI A	C specifications	30
	6.4	Analog	modules		34
		6.4.1	ADC electr	ical specifications	34
			6.4.1.1	12-bit ADC operating conditions	34
			6.4.1.2	12-bit ADC electrical characteristics 3	6
		6.4.2	CMP with a	3-bit DAC electrical specifications	37
	6.5	Commu	inication mo	dules4	1
		6.5.1	LPUART e	lectrical specifications4	1
		6.5.2	LPSPI elect	trical specifications 4	1
		6.5.3	LPI2C elec	trical specifications4	18
		6.5.4	FlexCAN e	lectical specifications4	19
		6.5.5	SAI electric	cal specifications 4	9
		6.5.6	Ethernet A	C specifications	51
		6.5.7	Clockout fr	equency5	54
	6.6	Debug 1	nodules	5	54
		6.6.1	SWD electr	ical specofications5	54
		6.6.2	Trace electr	ical specifications5	66
		6.6.3	JTAG elect	rical specifications5	57
7	Ther	mal attri	butes		60
	7.1	Descrip	tion		60
	7.2	Therma	l characteris	tics6	60
	7.3	General	notes for sp	ecifications at maximum junction	
		tempera	iture	6	54
8	Dim	ensions		6	55
	8.1	Obtaini	ng package o	limensions6	55
9	Pino	uts		6	6
	9.1	Package	e pinouts and	l signal descriptions6	6
10	Revi	sion His	tory	6	6

7

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

Figure 1. High-level architecture diagram for the S32K14x family

Feature comparison

2 Feature comparison

The following figure summarizes the memory and package options for the S32K product series and demonstrates where this device fits within the overall series. All devices which share a common package are pin-to-pin compatible.

3.2 Ordering information

	F/P	S32	Κ	1	0	0	Х	Y	F0	Μ	LC	R
Product status Product type/brand												
Product line												
Series/Family (including generation) Core platform/ Performance												
Memory size												
Ordering option 1: Letter												
Ordering option 2: Letter												
Fab and Mask rev. letter												
Temperature												
Package												
Tape and Reel												

Product status

P: Prototype

F: Qualified ordering P/N

Product type/brand S32: Automotive 32-bit MCU

Product line K: ARM Cortex MCUs M: MagniV/Mixed Signal

Series/Family 1: 1st product series

2: 2nd product series

Core platform/Performance

1: ARM Cortex M0+ 4: ARM Cortex M4F

Memory size

	2	4	6	8
M0+	32 K	64 K	128 K	256 K
M4F	256 K	512 K	1 M	2 M

Ordering option

X: Speed

- B: 48 MHz without DMA (only for S32K11x) L: 48 MHz with DMA (only for S32K11x) M: 64 MHz H: 80 MHz U: 112 MHz
- Y: Optional feature
- N: No/None R: Max. RAM
- F: CAN-FD and FlexIO including max. RAM
- S: Security including max. RAM
- A: CAN-FD, FlexIO, and Security including max. RAM
- E: Ethernet and audio including max. RAM
- J: CAN FD, FlexIO, Security, Ethernet and audio including max. RAM

Fab and Mask rev. letter

Fx: ATMC Tx: GF XX: Flex #

x0: 1st fab revision x1: 2nd fab revision

Figure 4. Ordering information

Temperature

C: -40C to 85C V: -40C to 105C M: -40C to 125C

Package

Pins	LQFP	LQFP -EP	QFN	BGA
32	LC	-	FM	-
48	LF	KF	FT	-
64	LH	кн	-	-
100	LL	-	-	мн
144	LQ	-	-	-
176	LU	-	-	-

Tape and Reel

T: Trays and Tubes R: Tape and Reel

4.4 Power and ground pins

Figure 5. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100	—	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

- V_{DD} and V_{DDA} must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.
- 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

	Ambient Temperature (°C)		VLPS	(μΑ) ^{2, 3}	VI (n	.PR nA)	STOP1 (mA)	STOP2 (mA)	RUN MHz	I@48 (mA)	RUN@ (n	64 MHz nA)	RUN@ (n	80 MHz nA)	HSRU MHz (N@112 (mA) ⁴	ldd/MH z (μΑ/ MHz) ⁵
	85	Тур	150	159	1.72	1.85	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	8.3	9.2	21.9	28.5	27.8	34.4	32.9	41.5	45.5	57.5	411
	105	Тур	256	273	1.80	2.10	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	10.3	10.6	22.7	30	28.3	36.5	33.4	43.3	47.9	61.3	418
	125	Max	1960	1998	3.18	3.25	12.2	13	25.3	32.7	35	39.8	37.1	46.5	NA	NA	464
S32K146	25	Тур	40	55	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	95	110	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	70	80	NA	NA	TBD
S32K148 ^{7, 8}	25	Тур	40	60	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	120	125	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	100	110	NA	NA	TBD

1. Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration.

2. This is an average based on the use case described in the Comparator section, whereby the analog sampling is taking place periodically, with a mechanism to only enable the DAC as required. The numbers quoted assumes that only a single ANLCMP is active and the others are disabled

3. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.

4. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

5. Values mentioned are measured at 25 °C at RUN@80 MHz with peripherals disabled.

6. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.

7. Above S32K148 data is preliminary targets only

8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are active. If the same configuration is selected as per the S32K144, then the two devices will have very similar IDD.

17

Table 10.	DC electrical s	pecifications a	at 5.0 V	Range	(continued)	
-----------	-----------------	-----------------	----------	-------	-------------	--

Symbol	Parameter		Value	Unit	Notes	
		Min.	Тур.	Max.		
loh_Strong	I/O current source capability measured when $pad = V_{DDE} - 0.8 V$	20	_	_	mA	3, 4
lol_Strong	I/O current sink capability measured when pad = 0.8 V	20	_		mA	4, 5
IOHT	Output high current total for all ports	—	_	100	mA	
IIN	Input leakage current (per pin) for full	temperature	e range at V _D	_D = 5.5 V		6
	All pins other than high drive port pins		0.005	0.5	μA	•
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	7
R _{PD}	Internal pulldown resistors	20		50	kΩ	8

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 7. Measured at input $V = V_{SS}$
- 8. Measured at input $V = V_{DD}$

5.5 AC electrical specifications at 3.3 V range

Table 11. AC electrical s	specifications a	t 3.3 V Range
---------------------------	------------------	---------------

Symbol	DSE	Rise tii	ne (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
Standard	NA	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
Strong	0	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
	1	2.0	5.8	1.8	6.1	25
		2.8	8.0	2.6	8.3	50
		7.0	20.7	6.0	22.4	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

S32K1xx Data Sheet, Rev. 4, 06/2017

Symbol	Description	Min.	Max.	Unit
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	—	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	—	40	MHz
f _{FLASH}	Flash clock	—	26.67	MHz
	VLPR mode ⁴	-		
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	4	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{ERCLK}	External reference clock	—	16	MHz

 Table 14.
 Device clock specifications 1 (continued)

1. Refer to the section Feature comparison for the availability of modes and other specifications.

2. Only available on some devices. See section Feature comparison.

3. With SPLL as system clock source.

4. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

Figure 8. Oscillator connections scheme

Table 15.	External Sy	stem Oscillator	^r electrical	specifications
-----------	-------------	-----------------	-------------------------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g mxosc	Crystal oscillator transconductance					
	4-8 MHz	2.2	_	13.7	mA/V	
	8-40 MHz	16	_	47	mA/V	
VIL	Input low voltage — EXTAL pin in external clock mode	V _{SS}	—	0.35 * V _{DD}	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	—		1
C ₂	XTAL load capacitance	_	—	—		1
R _F	Feedback resistor					2
	Low-gain mode (HGO=0)	—	—	—	MΩ	

Table continues on the next page...

Symbol	Description ¹	Min.	Тур.	Max.	Unit	Notes
t _{eewr16b64k}	48 KB EEPROM backup	—	475	2000	μs	
	64 KB EEPROM backup					
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	μs	
t _{eewr32b32k}	32-bit write to FlexRAM execution time:	_	630	2000	μs	3, 4
t _{eewr32b48k}	32 KB EEPROM backup	—	720	2125	μs	
t _{eewr32b64k}	48 KB EEPROM backup	_	810	2250	μs	
	64 KB EEPROM backup					
t _{quickwr}	32-bit Quick Write execution time : Time from CCI complete, ready for next 32-bit write)	F clearing (st	art the write)	until CCIF s	etting (32-bit	write
	1st 32-bit write	—	200	550	μs	5, 6
	 2nd through Next to Last (Nth-1) 32-bit 	—	150	550	μs	
	write	_	200	550	μs	
	 Last (Nth) 32-bit write (time for write only, not cleanup) 					
t _{quickwr} Clnup	Quick Write Cleanup execution time			(Number of Quick Writes) * 2.0	ms	7

Table 21. Flash command timing specifications (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For all EEPROM Emulation terms, the specified timing shown assumes previous record clean up has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM issues detected.
- 4. 'First time' EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. For 'Typ.', only after the Nth write completes will any data will be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power or reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write may take up to 550 µs as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 22. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using as Program	and Data	Flash			

Table continues on the next page ...

S32K1xx Data Sheet, Rev. 4, 06/2017

NXP
Semiconductors

Preliminary

	FLASH PORT	Sym	Unit		FLASH A											FLASH B			
						RL	JN ¹					HSR	UN ¹				RUN/HSRUN ²		
	QuadSPI Mode	1				S	DR			SDR						SDR		DDR ³	
				Inte Sam	ernal pling		Internal DQS		Internal Sampling		Internal DQS				Internal Sampling		External DQS		
				N	11	PAD Loopback		Inte Loop	ernal oback	N	1	PAD Loopback		Internal Loopback		N1		Extrenal DQS	
				Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max
					•	•	•	Regis	ster Sett	tings									
<i>.</i>	MCR[DDR_EN]		-	(C	(0	(0	()	0		()	()	-	1
S32	MCR[DQS_EN]		-	()	-	1	-	1	()	1		-	1	()	-	1
Z	MCR[SCLKCFG[0]]		-	-	-		1		0		-		1)	-		-	
2 L	MCR[SCLKCFG[1]]		-	-			1		0		-		1		0		-		-
Data	MCR[SCLKCFG[2]]		-	-	-	-		-		-		-		-		-		0	
l ST	MCR[SCLKCFG[3]]		-	-	-	-			-			-		-		-		0	
leet	MCR[SCLKCFG[5]]		-	-	-	-		-		-		-		-		-		1	
קר גר	SMPR[FSPHS]		-	0	C	1		(0		0		1)	0		0	
ev.	SMPR[FSDLY]		-	()	(0	(0		0		0)	0		0	
, 4 0	SOCCR			-	-	(0	2	23		-			3	0	-			-
6/2	[SOCCFG[7:0]]																		
017	SOCCR[SOCCFG[15:8]]	CCR[SOCCFG[15:8]]		-		-			-			-	-		3	0			
	FLSHCR[TDH]		-	0x	00	0x	:00	0x	:00	0x	00	0x0	00	0x	00	0x	00	0x	.01
		Timing Parameters																	
	SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
	SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-

 Table 23. QuadSPI electrical specifications

Table continues on the next page...

s

6.4.1.2 12-bit ADC electrical characteristics

NOTE

ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.

Table 25. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		2.7	—	3	V	
I _{DDA_ADC}	Supply current per ADC		—	0.6	1.5	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±1.0	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		—	±2.0	—	LSB ⁵	6, 7, 8, 9

1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to half the ADC clock frequency.

- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS} =20 Ω , and C_{AS} =10 nF, 100 LQFP package unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Table 26. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		3	—	5.5	V	
I _{DDA_ADC}	Supply current per ADC		—	1	2.1	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	

Table continues on the next page...

Table 29. LPSPI electrical specifications1 (continued)

Num	Symbol	Description	Conditions		Run	Mode ²			HSRUN Mode ²				VLPR Mode			
				5.0	V IO	3.3	V IO	5.0	V IO	3.3	V IO	5.0	V IO	3.3 V	/ 10	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
10	t _v	Data valid	Slave	-	30	-	39	-	26	-	36	-	92	-	96	ns
		(after	Master	-	12	-	16	-	11	-	15	-	47	-	48	1
		edge)	Master Loopback ⁵	-	12	-	16	-	11	-	15	-	47	-	48	
			Master Loopback(slow) 6	-	8	-	10	-	7	-	9	-	44	-	44	
11	t _{HO}	Data hold	Slave	4	-	4	-	4	-	4	-	4	-	4	-	ns
	time(outpu	time(outputs)	Master	-15	-	-22	-	-15	-	-23	-	-22	-	-29	-	
			Master Loopback ⁵	-10	-	-14	-	-10	-	-14	-	-14	-	-19	-	
			Master Loopback(slow) 6	-15	-	-22	-	-15	-	-22	-	-21	-	-27	-	
12	t _{RI/FI}	Rise/Fall	Slave	-	1	-	1	-	1	-	1	-	1	-	1	ns
		time input	Master	-		-		-		-		-		-		
			Master Loopback ⁵	-		-		-		-		-		-		
			Master Loopback(slow) 6	-		-		-		-		-		-		
13	t _{RO/FO}	Rise/Fall	Slave	-	25	-	25	-	25	-	25	-	25	-	25	ns
		time output	Master	-		-		-		-	-	-		-		
			Master Loopback ⁵	-		-		-		-		-		-		
			Master Loopback(slow) 6	-		-	1	-		-		-		-		

Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.

While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz. f_{periph} = LPSPI peripheral clock 2.

3.

1.

Communication modules

Figure 24. MII receive diagram

Figure 25. MII transmit signal diagram

The following table describes the RMII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
—	RMII input clock RMII_CLK Frequency	—	50	MHz
RMII1, RMII5	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2, RMII6	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	—	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns

Table continues on the next page...

Figure 29. Serial wire clock input timing

Figure 30. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

	Symbol	Description	RUN Mode		HSRUN Mode		VLPR Mode	Unit	
_	Fsys	System frequency	80	48	40	112	80	4	MHz

Table 36.	Trace s	pecifications
-----------	---------	---------------

Table continues on the next page...

Figure 32. Test clock input timing

Figure 33. Boundary scan (JTAG) timing

Table 38. Thermal characteristics for the 64/100/144/176-pin LQFP package (continued)

Rating	Conditions	Symbol	Packages	Values					Unit
				S32K11x	S32K142	S32K144	S32K146	S32K148	1
Thermal resistance, Junction to Case ⁵	_	R _{θJC}	64	TBD	13	12	11	NA	°C/W
			100	TBD	13	12	11	NA	°C/W
			144	TBD	NA	NA	12	9	°C/W
			176	TBD	NA	NA	NA	9	°C/W
Thermal resistance, Junction to Package	Natural ψ _{JT} Convection	ΨJT	64	TBD	2	2	2	NA	°C/W
Top ⁶		100	TBD	2	2	2	NA	°C/W	
			144	TBD	NA	NA	2	1	°C/W
			176	TBD	NA	NA	NA	1	°C/W

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air 1. flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

З. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6.

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100 MAP BGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	12 Aug 2016	Initial release
2	03 March 2017	 Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Determining valid orderable parts Updated figure: Ordering information In table: Absolute maximum ratings : Added footnote to I_{INJPAD_DC} Updated description, max and min values for I_{INJSUM} Updated description, max and Vin Renamed V_{SUP_OFF} Removed V_{INA} and V_{IN} Added footnote "Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V Removed I_{NJSUM_AF} Updated footnotes in table Table 4 Updated section Power mode transition operating behaviors In table: Power consumption Added footnote "With PMC_REGSC[CLKBIASDIS] " Updated numbers for S32K142 and S32K148 Removed ldd/MHz for S32K144 Updated numbers for S32K142 and S32K148 Removed use case footnotes In section Modes configuration : Replaced table "Modes configuration" with spreadsheet atta

Table 40. Revision History

Table continues on the next page...