

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

F <i>P</i>	MIL	ES											_	_	_	_			_	_		
	()	es)				Rei	mappa	ble P	eriphe	erals					-							
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	I/O Pins	Pins	Packages	
PIC24EP32MC202	512	32	4																			
PIC24EP64MC202	1024	64	8																		SPDIP,	
PIC24EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
PIC24EP256MC202	1024	256	32				-														QFN-S	
PIC24EP512MC202	1024	512	48																			
PIC24EP32MC203	512	32	4	-			<u> </u>	,	6	6		<u> </u>	6		_		v	~	0-) (T) A	
PIC24EP64MC203	1024	64	8	5	4	4	6	1	2	2	_	3	2	1	8	3/4	Yes	Yes	25	36	VTLA	
PIC24EP32MC204	512	32	4															1				
PIC24EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,	
PIC24EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP,	
PIC24EP256MC204	1024	256	32	2												-					40	QFN, UQFN
PIC24EP512MC204	1024	512	48																			
PIC24EP64MC206	1024	64	8																			
PIC24EP128MC206	1024	128	16	F	4	4	6	4	2	2		2	2	1	10	2/4	Vaa	Vaa	50	64	TQFP,	
PIC24EP256MC206	1024	256	32	5	4	4	6	1	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN	
PIC24EP512MC206	1024	512	48																			
dsPIC33EP32MC202	512	32	4																			
dsPIC33EP64MC202	1024	64	8																		SPDIP,	
dsPIC33EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3 (1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
dsPIC33EP256MC202	1024	256	32																		QFN-S	
dsPIC33EP512MC202	1024	512	48																			
dsPIC33EP32MC203	512	32	4	5	4	4	6	1	2	2		3	2	1	8	3/4	Yes	Yes	25	36	VTLA	
dsPIC33EP64MC203	1024	64	8	э	4	4	0	-	2	2		ა	2	I	0	3/4	res	tes	25	30	VILA	
dsPIC33EP32MC204	512	32	4																			
dsPIC33EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,	
dsPIC33EP128MC204	1024	128	16	5	4	4	6	1	2	2	—	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,	
dsPIC33EP256MC204	1024	256	32																		UQFN	
dsPIC33EP512MC204	1024	512	48																			
dsPIC33EP64MC206	1024	64	8																			
dsPIC33EP128MC206	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	TQFP,	
dsPIC33EP256MC206	1024	256	32	5	+	1	0	1	2	2		5	2	· ·	10	5/4	165	163	55	04	QFN	
dsPIC33EP512MC206	1024	512	48																			
dsPIC33EP32MC502	512	32	4																			
dsPIC33EP64MC502	1024	64	8																		SPDIP, SOIC,	
dsPIC33EP128MC502	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
dsPIC33EP256MC502	1024	256	32																		QFN-S	
dsPIC33EP512MC502	1024	512	48																			
dsPIC33EP32MC503	512	32	4	5	4	4	6	1	2	2	1	3	2	1	8	3/4	Yes	Yes	25	36	VTLA	
dsPIC33EP64MC503	1024	64	8	~					_	_			_		Ĵ	<i></i>						

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

		0.00				011 401			20/0/00/							-	r	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A	W13						xxxx										
W14	001C		W14							xxxx								
W15	001E		W15							xxxx								
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	H								0000
ACCAU	0026			Si	gn Extensior	n of ACCA<	39>						ACO	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Si	gn Extensior	n of ACCB<	39>						ACO	CBU				0000
PCL	002E							F	PCL<15:0>									0000
PCH	0030	_	_	_	—	_	_	—	_	_				PCH<6:0>				0000
DSRPAG	0032	_	_	_	—	_	_					DSRPAC	6<9:0>					0001
DSWPAG	0034	_		_	—		_	_				DS	WPAG<8:	0>				0001
RCOUNT	0036	RCOUNT<15:0>					0000											
DCOUNT	0038	DCOUNT<15:0>						0000										
DOSTARTL	003A			DOSTARTL<15:1> —						0000								
DOSTARTH	003C	_	—	—	_	—	—	_	_	_	—			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1>	>								0000
DOENDH	0040	_	—	—	—	—	—	_	—	—	—			DOEND)H<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	τу.																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	-		_	—	_	_	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF		_	_	_	—	—	_	_	_	_	_	—	—	—	0000
IFS9	0812	_	_	_	_	_	_	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	—	—	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0	>	_		IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0	>	_		IC2IP<2:0>		_	C	0MA0IP<2:0>		4444
IPC2	0844	_	U	J1RXIP<2:0	>	_	;	SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D)MA1IP<2:	0>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>				CMIP<2:0	>	_		MI2C1IP<2:0	>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	—	_	_	I	INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(OC4IP<2:0	>	_		OC3IP<2:0>		_	C)ma2IP<2:0>		4444
IPC7	084E		I	U2TXIP<2:0	>		L	J2RXIP<2:)>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850		_	_	_		_	—	—	_		SPI2IP<2:0>		_	S	SPI2EIP<2:0>		0044
IPC9	0852		_	_	_			IC4IP<2:0	>	_		IC3IP<2:0>		_	C	0MA3IP<2:0>		0444
IPC12	0858		_	_	_		N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860			CRCIP<2:0>	>			U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866		_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC35	0886			JTAGIP<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888	_		PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	_	_	—	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_				—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_				_	_		—	—	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_			_	_	_	_	DAE	DOOVR	_	_	—		0000
INTCON4	08C6		_	_	_	_	_	—	_	_	_	_	_	_	_		SGHT	0000
INTTREG	08C8	_			_		ILR<	3:0>					VECN	UM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
Legend:							
bit 7							bit C
			NVMAD)R<23:16>			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15							bit 8
_	—	—	—	—	_	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown		nown			

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

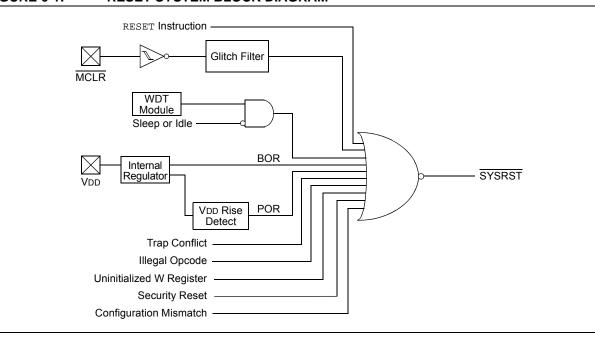
- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
CHEN	SIZE	DIR	HALF	NULLW								
bit 15							bit					
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0					
bit 7		AWODET	7 WIODE0			MODET	bit					
Lovende												
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'						
		W = Writable		-	mented bit, rea							
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	CHEN: DMA	Channel Enabl	e bit									
	1 = Channel 0 = Channel											
bit 14	SIZE: DMA Data Transfer Size bit											
	1 = Byte											
	0 = Word											
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)							
		om RAM addre om peripheral a		•								
bit 12		Block Transfer										
	1 = Initiates i	nterrupt when	half of the data	a has been mo								
bit 11		 Initiates interrupt when all of the data has been moved IULLW: Null Data Peripheral Write Mode Select bit 										
		write to periph			e (DIR bit must	also be clear)						
bit 10-6	Unimplemented: Read as '0'											
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits											
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode								
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1-0	-	DMA Channel		de Select bits								
	 11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled 00 = Continuous, Ping-Pong modes are disabled 											

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction


REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0		5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SCK2INR<6:0	>		
bit 15							bit 8
					5444.6	D 444 A	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as 'o	כי				
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits	

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

FIGURE 17-1: QEI BLOCK DIAGRAM

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	—	—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15	- 1						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	_	—		_	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 15		1 Input Scan S					
					input scan (Ope		
	•	•		surement for ir	nput scan (Open)	
bit 14		1 Input Scan S					
					or input scan (CT input scan (CTN		
bit 13-11	Unimplemen	ted: Read as '	0'				
bit 10	CSS26: ADC	1 Input Scan S	election bit ⁽²⁾				
	1 = Selects C) A3/AN6 for inp	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan S	election bit ⁽²⁾				
	1 = Selects C	0A2/AN0 for inp	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan S	election bit ⁽²⁾				
		0A1/AN3 for inp					
	0 = Skips OA	1/AN3 for input	scan				

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<7:0>			
bit 7							bit C

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	_D<15:8>			
bit 15							bit 8

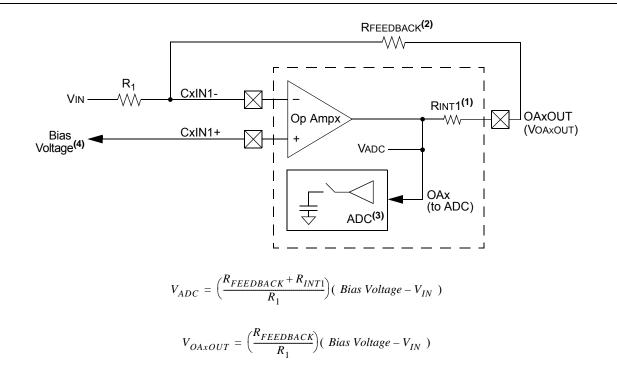
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGHOLD<7:0>								
bit 7 b								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).


25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes		
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

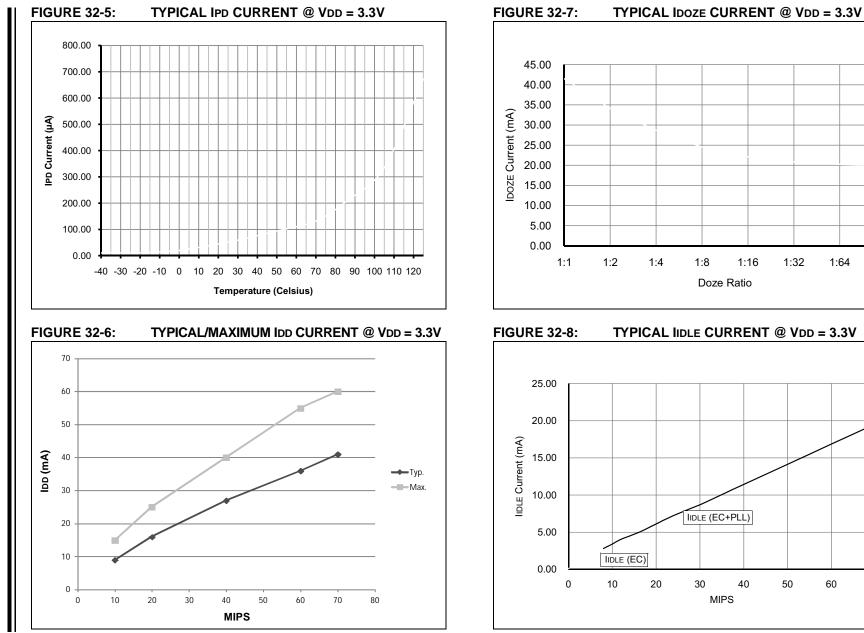
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

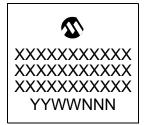

AC CHA	RACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions			
Internal	FRC Accuracy @ FRC Fre	equency =	: 7.37 MHz	<u>,(1)</u>					
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V		
		-1	0.5	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$			
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V			

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS		Operating temperation	ure -40°	$C \le TA \le +$	to 3.6V (unless otherw 85°C for Industrial 125°C for Extended	ise stated)	
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V	
		-20	_	+20	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: The change of LPRC frequency as VDD changes.

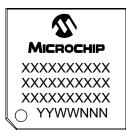


1:128

70

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)


Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.