

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp504-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	—	—	AMOD	E<1:0>	—	—	MODE	E<1:0>	0000
DMA0REQ	0B02	FORCE	_	-	_	-	_	-	_				IRQSEL	<7:0>				00FF
DMA0STAL	0B04								STA<1	5:0>								0000
DMA0STAH	0B06	_	_	_		_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	_	-		-	—	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	—	—							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	—	_	—	_	AMOD	E<1:0>	_	—	MODE	=<1:0>	0000
DMA1REQ	0B12	FORCE	_	_	_	_		_	_				IRQSEL	<7:0>				00FF
DMA1STAL	0B14								STA<1	5:0>								0000
DMA1STAH	0B16	_	—	_		_		—	_				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	—	—	_		—		-	—				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E		_							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW		-	—	—	_	AMOD	E<1:0>	—	—	MODE	=<1:0>	0000
DMA2REQ	0B22	FORCE	—	_		_		—	_				IRQSEL	_<7:0>				00FF
DMA2STAL	0B24								STA<1	5:0>								0000
DMA2STAH	0B26	—	—	—		—	_	—	—				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	—	_	_		—		—	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	—	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	—	—	MODE	E<1:0>	0000
DMA3REQ	0B32	FORCE	—	—		—	_	—	_				IRQSEL	_<7:0>				00FF
DMA3STAL	0B34								STA<1	5:0>								0000
DMA3STAH	0B36	—	—	—	—	—	—	—	—				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	—	_	-		_		_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	—	—							CNT<1	3:0>							0000
DMAPWC	0BF0	—	_	-		_		_	_	-	_	—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	—	_	—		—	_	—	—	—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	—	—	—		—	_	—	—	—	—	_	—	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	—		_	_	_		_		_			LSTCH	<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>								0000
DSADRH	0BFA	_	_	_	_	_	_	_	_	- DSADR<23:16>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect			agains	misaligned			stack		
	accesses, W			15<0>	is	fixed	to	'0'	by	the
	hard	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-4	Unimple	mented: Read as '0'		
bit 3	PPST3: [MA Channel 3 Ping-Pong	Mode Status Flag bit	
	1 = DMA	STB3 register is selected		
	0 = DMA	STA3 register is selected		
bit 2	PPST2: [MA Channel 2 Ping-Pong	Mode Status Flag bit	
	1 = DMA	STB2 register is selected		
	0 = DMA	STA2 register is selected		
bit 1	PPST1: [MA Channel 1 Ping-Pong	Mode Status Flag bit	

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP43	R<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP42R<5:0>						

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit	7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP55	SR<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP54R<5:0>						
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplementer				mented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk				nown			

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_		DTRx<13:8>						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTR	2x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = B					ared	x = Bit is unkr	nown		

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			ALTDT	Rx<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ALTDT	Rx<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				d as '0'				
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This insures		that	the	first	fra	ame
	transmission a		after	initializ	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

20.1 UART Helpful Tips

- 1. In multi-node, direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

- "UART" (DS70582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to the " UART " (DS70582) section in the <i>"dsPIC33/PIC24 Family Reference Manual"</i> for information on enabling the UARTx module for receive or transmit operation.

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	VREFL

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	СНЗ
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6
0 (1,2)	OA2/AN0	AN1	AN2

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value		ADC Channel	
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	VREFL

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR<4:0	>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-7)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	- 1)<7:0> (2)			
bit 15							bit 8
R/\/_0	R/\/_0	R/\/_0	R/\/_0	R/W_0	R/\\/_0	R/\/_0	R/\/_0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x	()<7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x + 1) command byte
bit 7-0	STEP(2x)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 24-1 for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

30.1 DC Characteristics

|--|

			Maximum MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – ΤΑ)/θJΑ			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3		°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θја	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				Conditions
DO31	TIOR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	—	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	TRBP	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур.	p. Max. Units Conditions			
		ADC A	ccuracy (10-Bit N	lode)			
AD20b	Nr	Resolution	10 Data Bits			bits		
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-1.5	_	1.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-0.25		0.25	LSb	+85°C < TA \leq +125°C (Note 2)	
AD23b	Gerr	Gain Error	-2.5		2.5	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-2.5	_	2.5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24b	EOFF	Offset Error	-1.25		1.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$	
			-1.25	_	1.25	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25b	—	Monotonicity	_	_	_		Guaranteed	
Dynamic Performance (10-Bit Mode)								
AD30b	THD	Total Harmonic Distortion ⁽³⁾		64	—	dB		
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	-	57	_	dB		
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB		
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	_	550		kHz		
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	—	bits		

TABLE 30-59: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2