

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp504-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_		_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6					_	_			_				_	—		SGHT	0000
INTTREG	08C8						ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this ORL in your prowser.
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "**CPU**" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

11-0	R-0	R-0	R-0	U-O	R/W-v	R/W-v	R/W-v			
	COSC2	COSC1	COSCO	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾			
bit 15							bit 8			
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾		—	OSWEN			
bit 7							bit 0			
			(
Legend:	- h l - h :4	y = Value set	from Configur	ation bits on P	'OR	(0)				
		vv = vvritable	DIL	0 = 0	mented bit, read	as u				
-n = value	alpor	I = BILIS Set		0 = Bit is cle	ared		IOWN			
bit 15	bit 15 Unimplemented: Read as '0'									
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	')					
	111 = Fast R(C Oscillator (F	RC) with Divid	le-by-n	,					
	110 = Fast R	C Oscillator (F	RC) with Divid	le-by-16						
	101 = Low-Po	ower RC Oscill	ator (LPRC)							
	011 = Primary	v Oscillator (X	r, HS, EC) wit	h PLL						
	010 = Primary	y Oscillator (X	r, HS, EC)							
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid RC)	le-by-N and PL	L (FRCPLL)					
bit 11	Unimplemen	ted: Read as '	0'							
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)						
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n						
	110 = Fast R	C Oscillator (F	RC) with Divic	le-by-16						
	101 - Low-PC 100 = Reserv	ed								
	011 = Primary	y Oscillator (X	r, HS, EC) wit	h PLL						
	010 = Primary	y Oscillator (X	r, HS, EC)							
	001 = Fast R0 000 = Fast R0	C Oscillator (FI	RC) with Divid RC)	Ie-by-N and PL	L (FRCPLL)					
bit 7	CLKLOCK: C	lock Lock Ena	ble bit							
	1 = If (FCKS	M0 = 1), then c	lock and PLL	configurations	are locked; if (F	CKSM0 = 0), t	hen clock and			
	0 = Clock and	d PLL selection	ns are not lock	ked, configurat	ions may be mo	dified				
bit 6	IOLOCK: I/O	Lock Enable b	it							
	1 = I/O lock is	active								
	0 = I/O lock is	not active	/ I I \							
bit 5	LOCK: PLL L	ock Status bit	(read-only)	ant un tincaria	a atiafia d					
	 1 = indicates 0 = Indicates 	that PLL is in	t of lock, start	-up timer is -up timer is in	progress or PLL	is disabled				
Note 1:	Writes to this regis	ter require an e erence Manual	unlock sequer " (available fro	nce. Refer to " om the Microch	Oscillator" (DS ip web site) for	70580) in the <i>"</i> o details.	dsPIC33/			
2:	Direct clock switch This applies to cloc	es between an ck switches in o	y primary osci either direction	llator mode wit	h PLL and FRC ances, the appli	PLL mode are r cation must sw	not permitted. itch to FRC			
	moue as a transitio	nai Clock Sour		IE IWO PLL IIIO	u c s.					

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

13.2 Timer Control Registers

R/M/ 0	11.0		11.0	11.0	11.0	11.0	11.0			
	0-0		0-0	0-0	0-0	0-0	0-0			
bit 15		TOIDE	_							
51115							bit 0			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_			
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	bit 15 $ \begin{array}{c} \text{TON: Timerx On bit} \\ \underline{When T32 = 1:} \\ 1 = \text{Starts 32-bit Timerx/y} \\ 0 = \text{Stops 32-bit Timerx/y} \\ \underline{When T32 = 0:} \\ 1 = \text{Starts 16-bit Timerx} \\ 0 = \text{Stops 16-bit Timerx} \end{array} $									
bit 14	Unimplement	ted: Read as 'd)'							
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit							
	1 = Discontinu 0 = Continues	ues module opera	eration when o tion in Idle mo	device enters I ode	dle mode					
bit 12-7	Unimplement	ted: Read as '	י)							
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tim 0 = Gated tim	rx Gated Time <u>1:</u> pred. <u>0:</u> e accumulatior e accumulatior	Accumulation	Enable bit						
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1									
bit 3	T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers									
bit 2	Unimplement	ted: Read as 'd	י)							
bit 1	TCS: Timerx (1 = External c 0 = Internal cl	Clock Source S clock is from pir ock (FP)	Select bit n, TxCK (on th	e rising edge)						
bit 0	Unimplement	ted: Read as ')'							

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
			- ¹				
DIT 15-12	Unimpleme	nted: Read as 1).				
DIT 11-8	BLANKSEL	<3:0>: PVVMX S	tate Blank Sol	LICE Select bits	and/on Fault in	aut airmala /if a	
	BCH and BC	I state blank sig	RCONx regist	ne current-iimit er)	and/or Fault inp	but signals (il e	nabled via the
	1001 = Res	erved	Sective				
	•						
	•						
	•						
	0100 = Res e	erved					
	0011 = PWN	A3H selected as	state blank s	ource			
	0010 = PWN	M2H selected as	state blank s	ource			
	0000 = No s	tate blanking					
bit 7-6	Unimpleme	nted: Read as '	D'				
bit 5-2	CHOPSEL<	3:0>: PWMx Ch	op Clock Sou	rce Select bits			
	The selected	l signal will enat erved	ble and disable	e (CHOP) the se	elected PWMx of	outputs.	
	•						
	•						
	•						
	0100 = Res e	erved					
	0011 = PWN	A3H selected as	CHOP clock	source			
	0010 = PWN	M2H selected as		source			
	0000 = Cho	p clock generato	or selected as	CHOP clock so	urce		
bit 1	CHOPHEN:	PWMxH Output	Chopping En	able bit			
	1 = PWMxH	chopping function	on is enabled				
	0 = PWMxH	chopping function	on is disabled				
bit 0	CHOPLEN:	PWMxL Output	Chopping Ena	able bit			
	1 = PWMxL	chopping function	on is enabled				
	0 = PWMxL	chopping function	on is disabled				

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
bit 7			1	1	I	1	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000-1111	1 = Reserved					
	01111 = Filte	r 15					
	•						
	•						
	•						
	00001 = Filte 00000 = Filte	r 1 r 0					
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	ICODE<6:0>:	: Interrupt Flag	Code bits				
	1000101-11	11111 = Rese	rved				
	1000100 = F	IFO almost full	interrupt				
	1000011 = R 1000010 = W	ake-up interru	pt				
	1000001 = E	rror interrupt					
	1000000 = N	o interrupt					
	•						
	•						
	•						
	0010000-01	11111 = Kese B15 buffer inte	rved				
	•		nupt				
	•						
	•						
	0001001 = R	B9 buffer inter	rupt				
	0001000 = R	B8 buffer inter	rupt				
	0000111 = T	RB7 buffer inte	rrupt				
	0000110 = 1	RB5 buffer inte	errupt				
	0000100 = T	RB4 buffer inte	errupt				
	0000011 = T	RB3 buffer inte	rrupt				
	0000010 = T	RB2 buffer inte	rrupt				
	0000001 = T	RB1 buffer inte	errupt				
			πupι				

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F15B	P<3:0>			F14B	P<3:0>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
-	F13B	P<3:0>		F12BP<3:0>						
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unkno			nown			
L										
bit 15-12	F15BP<3:0	>: RX Buffer Ma	sk for Filter 1	5 bits						
	1111 = Filte	er hits received in	n RX FIFO bu	uffer						
	1110 = Filte	r hits received in	n RX Buffer 1	4						
	•									
	•									
	•	n hito no ocivio d iv								
	0001 = Filte	r hits received ii	DRX Builler I							
h:+ 44 0				4 h:ta (a a ma a ma)						
DIT 11-8	F14BP<3:0	>: RX Buffer Ma	SK for Fliter 1	4 bits (same va	iues as bits<15):12>)				
bit 7-4	F13BP<3:0	>: RX Buffer Ma	sk for Filter 1	3 bits (same va	lues as bits<15	5:12>)				
bit 3-0	F12BP<3:0	RX Buffer Ma	sk for Filter 1	2 bits (same va	lues as bits<15	5:12>)				

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	te 6				
bit 7							bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	

bit 15-8 Byte 7<15:8>: ECAN Message Byte 7 bits

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6 bits

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	FILHIT4 ⁽¹⁾	FILHIT3 ⁽¹⁾	FILHIT2 ⁽¹⁾	FILHIT1 ⁽¹⁾	FILHITO ⁽¹⁾
bit 15	- -						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		—	_	—	—	—
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is se		'1' = Bit is set		0' = Bit is cleared $x = E$		x = Bit is unkr	= Bit is unknown	
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8	DWIDTH<4:0>: Data Width Select bits							
	These bits set the width of the data word (DWIDTH<4:0> + 1).							
bit 7-5	Unimplemented: Read as '0'							

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502 and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA.

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch E			0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX	
Number of Pins		48			
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness A3 0.12		0.127 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2