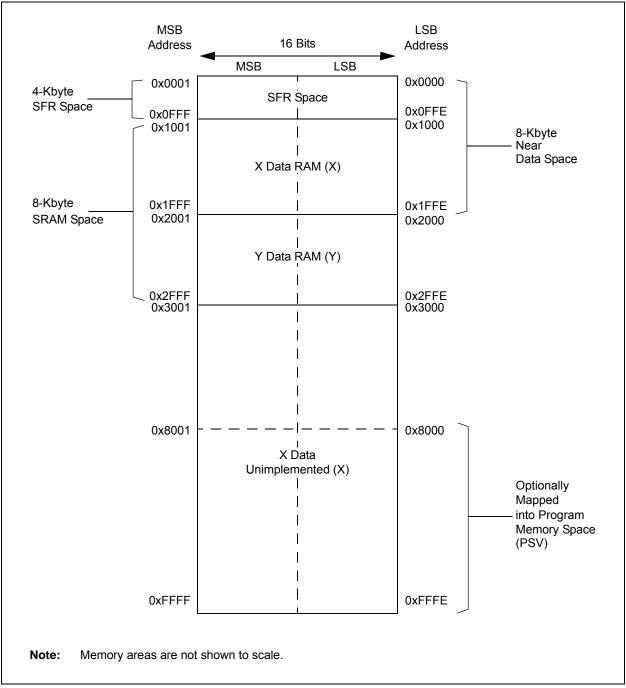


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

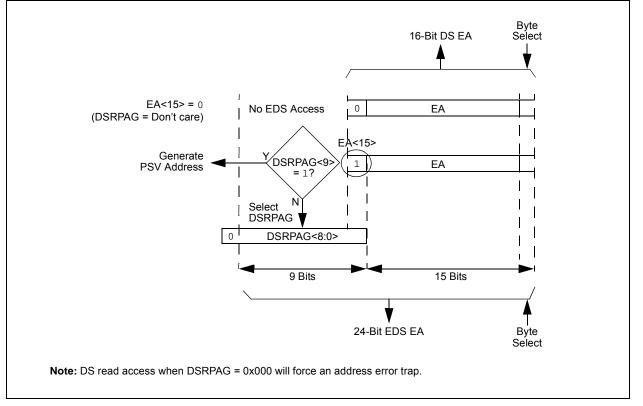

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp504-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

	Vector	IRQ		Interrupt Bit Location			
Interrupt Source	# #		IVT Address	Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—	
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—	
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—	
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	—	—	_	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_	
	Lowe	est Natura	I Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

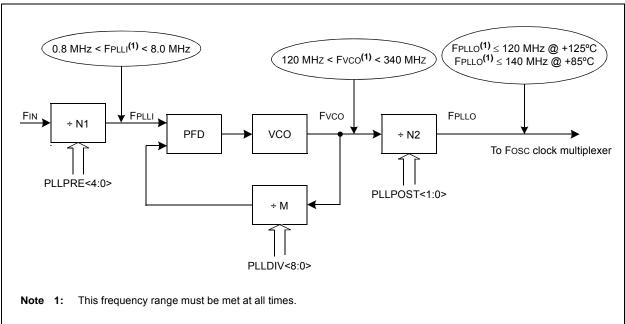
2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$

M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

DS70000657H-page 154

© 2011-2013 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0			
bit 15			•				bit 8			
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0			
bit 7							bit (
Legend:										
R = Readable		W = Writable		-	nented bit, read					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
h:+ 45		on Interview h								
bit 15		on Interrupt bis will clear the l								
		s have no effect		EN bit						
bit 14-12	•	Processor Clo								
	111 = Fcy div									
	110 = Fcy div	vided by 64								
	101 = Fcy divided by 32									
	100 = Fcy divided by 16									
	011 = Fcy divided by 8 (default) 010 = Fcy divided by 4									
	001 = Fcy divided by 2									
	000 = Fcy div	•								
bit 11		e Mode Enable								
					pheral clocks a	nd the process	or clocks			
		-	-	ratio is forced to						
bit 10-8	FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits									
	111 = FRC divided by 256 110 = FRC divided by 64									
	100 = FRC divided by 64 101 = FRC divided by 32									
	100 = FRC divided by 16									
	011 = FRC divided by 8									
	010 = FRC divided by 4									
	001 = FRC divided by 2 000 = FRC divided by 1 (default)									
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)									
	11 = Output divided by 8									
	10 = Reserved									
		livided by 4 (de	efault)							
bit 5	00 = Output d	ted: Read as '	o'							
	•									
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to			
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.					
	DOJENUS				~ ~		<i>.</i>			

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER	<u>R 10-2: PMD</u> 2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_		—		IC4MD	IC3MD	IC2MD	IC1MD			
bit 15							bit			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
				OC4MD	OC3MD	OC2MD	OC1MD			
bit 7							bit			
Legend:	1.1.1									
R = Readab		W = Writable b	Dit	•	nented bit, rea					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-12	Unimplemen	ted: Read as '0	,							
bit 11	-									
	•	IC4MD: Input Capture 4 Module Disable bit 1 = Input Capture 4 module is disabled								
	0 = Input Cap	oture 4 module is	s enabled							
bit 10	IC3MD: Input	IC3MD: Input Capture 3 Module Disable bit								
	1 = Input Capture 3 module is disabled									
		oture 3 module is								
bit 9		IC2MD: Input Capture 2 Module Disable bit								
		oture 2 module is oture 2 module is								
bit 8	IC1MD: Input	t Capture 1 Mod	ule Disable bit							
	1 = Input Cap	oture 1 module is oture 1 module is	s disabled							
bit 7-4		ted: Read as '0								
bit 3	OC4MD: Out	put Compare 4	Module Disable	e bit						
	1 = Output Compare 4 module is disabled									
	-	ompare 4 modu								
bit 2		OC3MD: Output Compare 3 Module Disable bit								
	1 = Output Compare 3 module is disabled									
L:1 4	 0 = Output Compare 3 module is enabled OC2MD: Output Compare 2 Module Disable bit 									
bit 1										
	\perp – Output Co	ompare 2 modu								
	0 = Output Co	ompare 2 modul	le is enabled							
bit 0		ompare 2 modul put Compare 1		e bit						
bit 0	OC1MD: Out	ompare 2 modul put Compare 1 l ompare 1 modul	Module Disable	e bit						

~

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS2R<6:0>			
bit 7							bit 0
l egend:							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	_	_	—	—			
bit 15	bit 15 bit 8									
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	C1RXR<6:0>									
bit 7							bit 0			

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD				
bit 15			•				bit 8				
	D 4 4	D 0.01 4	D 444		DAMA	DAMA	DAMO				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0 FLTPOL ⁽²⁾	R/W-0	R/W-0				
FLTSRC4 bit 7	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLIPOL-	FLTMOD1	FLTMOD0 bit				
							DI				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Seleo	ct for PWM Ger	nerator # bits					
	11111 = Fault 32										
	11110 = Reserved										
	•										
	• 01100 = Reserved										
	01011 = Comparator 4										
		Amp/Comparat	or 3								
	•	Amp/Comparat									
		Amp/Comparat									
	00111 = Reserved										
	00110 = Reserved										
	00101 = Res	erved									
	00100 = Reserved										
	00011 = Fault 4										
	00010 = Fault 3										
	00001 = Fault 2										
	00000 = Fau	(<i>)</i>			~						
bit 9	CLPOL: Current-Limit Polarity for PWM Generator # bit ⁽²⁾										
	1 = The selected current-limit source is active-low										
	0 = The selec	cted current-lim	it source is ac	tive-high							
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generator	r # bit						
		imit mode is er imit mode is di									
	ne PWMLOCK			<6>) is a '1', th	e IOCONx regi	ster can only be	e written aftei				
the	unlock sequen	ce has been ex	ecuted.								

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	
bit 15							bit 8	
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7							bit 0	
Legend:		C = Clearab	le bit	HS = Hardwa	re Settable bit	HSC = Hardware Settable/Clearable bit		
R = Readabl	e bit	W = Writable	/ = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is se	et '0' = Bit is cleared x = Bit is unknown					

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
bit 10	1 = NACK received from slave
	0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No bus collision detected Hardware is set at detection of a bus collision.
h # 0	
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received 0 = General call address was not received
	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop
	detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register was still holding the previous byte
	0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
	Refer to the " UART " (DS70582) section in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for receive or transmit operation.

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits						
	10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID<17>									
	•									
	•									
	•									
00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes										

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>	
bit 15		·					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	SK<1:0>	F2MS	K<1:0>	F1MS	K<1:0>	F0MS	K<1:0>
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
	01 = Accept	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contain	mask			
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bit	s (same values	s as bits<15:14	>)	
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bit	s (same values	s as bits<15:14	>)	
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bit	s (same values	s as bits<15:14	>)	
bit 7-6	F3MSK<1:0	>: Mask Source	for Filter 3 bit	s (same values	s as bits<15:14	>)	
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bit	s (same values	s as bits<15:14	>)	
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bits (same values as bits<15:14>)						
	F0MSK<1:0>: Mask Source for Filter 0 bits (same values as bits<15:14>)					.)	

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS			
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾			
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+			
R = Readable	a hit	W = Writable b			nented bit, read		L			
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.			
	FUR	I - DILIS SEL			aieu	x – Bit is unknov				
bit 15	ADON: ADO	C1 Operating M	ode bit							
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng							
bit 14	Unimpleme	nted: Read as	' 0 '							
bit 13	ADSIDL: A	DC1 Stop in Idle	e Mode bit							
	1 = Discontinues module operation when device enters Idle mode									
	0 = Continues module operation in Idle mode									
bit 12		: DMA Buffer B								
						rovides an addre	ess to the DM			
						nd-alone buffer des a Scatter/Ga	ther address t			
						size of the DMA b				
bit 11		nted: Read as								
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit						
	1 = 12-bit, 1-channel ADC operation									
	0 = 10-bit, 4	-channel ADC	operation							
bit 9-8	FORM<1:0>	Data Output I	Format bits							
	For 10-Bit C									
	11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)									
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)									
	00 = Integer (DOUT = 0000 00dd dddd dddd)									
	For 12-Bit C	peration:								
	•	fractional (Dou			0, where s = .I	NOT.d<11>)				
		nal (Dout = dd I integer (Dout				(<11>)				

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a То comprehensive reference source. complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

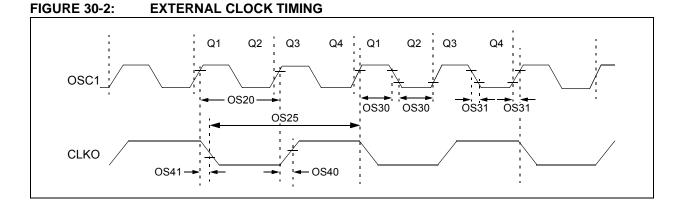
When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 27-1.

30.0 ELECTRICAL CHARACTERISTICS


This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502 and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA.

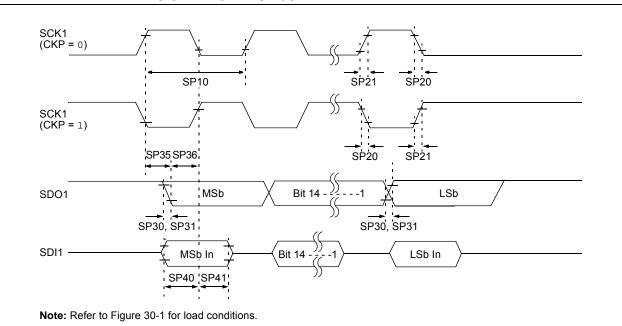

AC CHA	RACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq T_A \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq T_A \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS		
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C		
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C		
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	_	ns			
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2		ns			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C		
			—	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C		

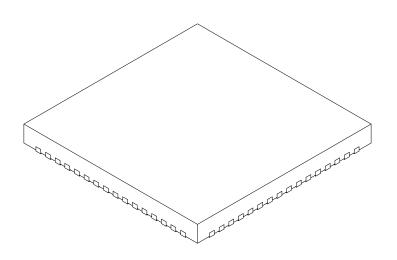
TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	-	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns		


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N	64		
Pitch	е	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations ". Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 " User ID Words ".
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

NOTES: