

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp504t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC2R<6:0>			
·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC1R<6:0>			
						bit C
e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
•			nbers)			
		1				
Unimplemer	nted: Read as '0					
(see Table 11 1111001 = I	I-2 for input pin's nput tied to RPI1	election num 21		onding RPn Pi	n bits	
	e bit POR Unimplemen IC2R<6:0>: / (see Table 11 1111001 = I 0000001 = I 0000000 = I Unimplemen IC1R<6:0>: / (see Table 11 1111001 = I	e bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 IC2R<6:0>: Assign Input Cap (see Table 11-2 for input pin s 1111001 = Input tied to RPI1 0000001 = Input tied to CMP 0000000 = Input tied to Vss Unimplemented: Read as '0 IC1R<6:0>: Assign Input Cap (see Table 11-2 for input pin s	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) (see Table 11-2 for input pin selection num 1111001 = Input tied to RPI121	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> IC1R<6:0> e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<>

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	R/W-0	R/W-0		DTCMP2R<6:0		R/W-0	R/W-U
bit 7					17		bit 0
bit i							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to CMI					
bit 7	1 = 0000000 = Ir	nput tied to CMI nput tied to Vss nted: Read as '(

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP43	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R<5:0>					

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

	bit	7
1		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP55	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP54R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

REGISTER 16-2:	PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—	PCLKDIV2 ⁽¹⁾	PCLKDIV1 ⁽¹⁾	PCLKDIV0(1)
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-3	Unimplemen	ted: Read as '	י'				

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved 110 = Divide-by-64 101 = Divide-by-32
- 100 = Divide-by-32100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
CHPCLKEN	—	—	—	—	—	CHOPC	LK<9:8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CHOPC	LK<7:0>				
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	s unknown	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHPCLKEN: Enable Chop Clock Generator bit 1 = Chop clock generator is enabled 0 = Chop clock generator is disabled bit 14-10 Unimplemented: Read as '0' CHOPCLK<9:0>: Chop Clock Divider bits The frequency of the chop clock signal is given by the following expression: Chop Frequency = (FP/PCLKDIV<2:0)/(CHOPCLK<9:0> + 1) Chop Clock Divider bits								

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u				x = Bit is unkr	nown		

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

17.2 QEI Control Registers

	REGISTER 17-1:	QEI1CON: QEI1 CONTROL REGISTER
--	----------------	--------------------------------

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7		-									
bit 15 bit 2 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 - intdividue W= Writable bit U = Unimplemented bit, read as '0' bit 15 GEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 13 GEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD-2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 100 = Modulo Count mode for position counter 100 = Next index event after home event initializes position counter with contents of QEI1IC register 100 = Next index input event initializes position counter with contents of QEI1IC register 100 = Index input event dees not affect position coun	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 0 Dit 7 Dit 7 Dit 7 Dit 7 Dit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' Dit 7 en value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 101 = Resets the position counter 101 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Module Count mode for position counter 101 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Index input event resets the position counter with contents of QEI1IC register	QEIEN	_	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ⁽²⁾	IMV0 ⁽²⁾			
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation unter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event frees the position counter 110 = Resets the position counter 11 = Reserved 11 = First index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register	bit 15							bit 8			
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation unter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event frees the position counter 110 = Resets the position counter 11 = Reserved 11 = First index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register											
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD-2:0-: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Resets the position counter 101 = Resets the position counter when the position counter with contents of QEI1IC register 101 = Nexet input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 011 = Every index input event resets the position counter 012 = Nease B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 <t< td=""><td>U-0</td><td></td><td></td><td></td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td></t<>	U-0				R/W-0	R/W-0	R/W-0	R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 bit 14 Unimplemented: Read as '0' 0 bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Reserved 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 101 = First index vent after home event initializes position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 010 = Next index input event does not affect position counter 001 = Every index input event after home event initializes position counter with contents of QEI1IC register		INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	bit 7 bit 0										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	Logondy										
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 14 Unimplemented: Read as '0' 0' 0' Bit is cleared 0 = Continues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI11C register 100 = Second index event after home event initializes position counter with contents of QEI11C register 10 = Next index input event resets the position counter with contents of QEI11C register 101 = Every index input event resets the position counter 00 = Index input event does not affect position counter 001 = Every index input event genst bit ⁽²⁾ 1 = Phase B match occurs when QEB = 1 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEA = 1 015 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 015 = Phase A match occurs when QEA =		lo hit		hit	II – Unimplor	monted bit read	ac '0'				
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 010 = Next index input event does not affect					•						
 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index Match Value for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	-n = value a	PUR	I = Bit is set		0 = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 001 = Every index input event for position counter 001 = Index input event does not affect position counter 000 = Index input event does not affect position counter 001 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0it 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0it 7 Unimplemented: Read as '0'	bit 15	1 = Module co	ounters are ena	abled							
 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event operation when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 14	Unimplemen	ted: Read as '	0'							
 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event QEB = 1 0 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 	bit 13	QEISIDL: QE	I Stop in Idle M	lode bit							
 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0 = Phase B match occurs when QEB = 0 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0 = Phase A match occurs when QEA = 0 						dle mode					
 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 12-10	PIMOD<2:0>	: Position Cour	nter Initializatio	on Mode Selec	t bits ⁽¹⁾					
1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 010 = Every index input event resets the position counter 										
0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 9	IMV1: Index I	Match Value for	⁻ Phase B bit ⁽²)						
bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'											
1 = Phase A match occurs when QEA = 10 = Phase A match occurs when QEA = 0bit 7Unimplemented: Read as '0'					N						
0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 8				1						
bit 7 Unimplemented: Read as '0'											
		•			inters onerate	as timers and th		> hits are			

Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Conditions						
	VIL	Input Low Voltage								
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V				
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled			
	Vih	Input High Voltage								
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	—	Vdd	V	(Note 3)			
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)			
		I/O Pins with SDAx, SCLx	0.8 VDD	—	5.5	V	SMBus disabled			
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled			
	ICNPU	Change Notification Pull-up Current								
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS			
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾								
DI31			20	50	100	μA	Vdd = 3.3V, Vpin = Vdd			

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (VSS 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

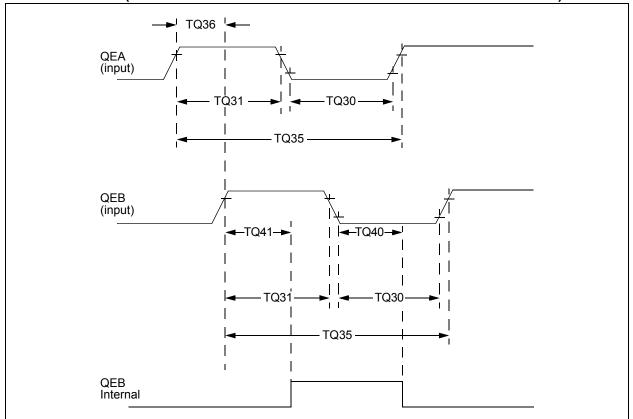
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CH	ARACTE	RISTICS	(unless	d Operating otherwise g temperat	stated) ure -40°	C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	liL	Input Leakage Current ^(1,2)					
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance}, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.


8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μS			
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS			
SY30	TBOR	BOR Pulse Width (low)	1	_		μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	—	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS			
SY38	Toscdlprc	LPRC Oscillator Start-up Delay		—	70	μS			

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	,		
Param No.	Symbol	Characteristic ⁽¹⁾	Typ. ⁽²⁾ Max.		Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns		
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns		
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns		
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns		
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. Typ. Max. Units				Conditions		
CTMU Current Source									
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	0.29		0.77	μA	CTMUICON<9:8> = 01		
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85		7.7	μA	CTMUICON<9:8> = 10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON<9:8> = 11		
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON<9:8> = 00		
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01		
			_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10		
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11		
CTMUFV2	VFVR	Temperature Diode Rate of Change ^(1,2,3)	_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01		
			_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10		
				-1.56	_	mV/ºC	CTMUICON<9:8> = 11		

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
ADC Accuracy (12-Bit Mode) ⁽¹⁾								
HAD20a	Nr	Resolution ⁽³⁾	12 Data Bits			bits		
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
Dynamic Performance (12-Bit Mode) ⁽²⁾								
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz		

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

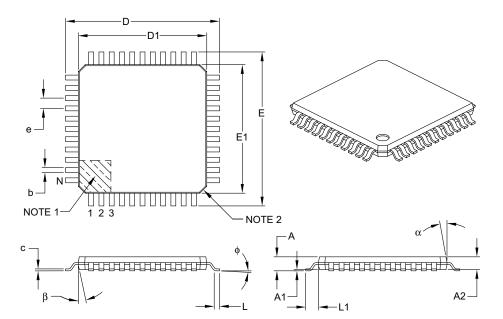
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions			
	ADC Accuracy (10-Bit Mode) ⁽¹⁾								
HAD20b	Nr	Resolution ⁽³⁾	10 Data Bits		bits				
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	Dynamic Performance (10-Bit Mode) ⁽²⁾								
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz			


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimens	sion Limits	MIN	NOM	MAX		
Number of Leads	Ν	44				
Lead Pitch	е	0.80 BSC				
Overall Height	А	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	φ	0°	3.5°	7°		
Overall Width	E		12.00 BSC			
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	_	0.20		
Lead Width	b	0.30	0.37	0.45		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B