

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp506-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
	DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
hit 1	PND: Dounding Mode Select hit(1)

- bit 1 **RND:** Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding is enabled
 - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned or mixed-sign DSP multiply (US)
- · Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	SUMMARY	
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

TABLE 4-49: PORTD REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	_	_	_		_	_	_	TRISD8		TRISD6	TRISD5					_	0160
PORTD	0E32	_	_		_	_	_		RD8	—	RD6	RD5	—	_	_	_		xxxx
LATD	0E34	_	_		_	_	_		LATD8	—	LATD6	LATD5	—	_	_	_		xxxx
ODCD	0E36	_			-				ODCD8	—	ODCD6	ODCD5	—	_	_	_		0000
CNEND	0E38	_			-				CNIED8	—	CNIED6	CNIED5	—	_	_	_		0000
CNPUD	0E3A	_	_		_	_	_		CNPUD8	—	CNPUD6	CNPUD5	—	_	_	_		0000
CNPDD	0E3C	_	_		_	_	_		CNPDD8	—	CNPDD6	CNPDD5	—	_	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE15	TRISE14	TRISE13	TRISE12	—	_	_	—	_		-	—	—	_	—		F000
PORTE	0E42	RE15	RE14	RE13	RE12	_	—	—	—		—	—	_	—	—	—	—	xxxx
LATE	0E44	LATE15	LATE14	LATE13	LATE12	_	_		—	_	_		_	—	-	—	_	xxxx
ODCE	0E46	ODCE15	ODCE14	ODCE13	ODCE12	—	-	-	-			-	—	—	_	_		0000
CNENE	0E48	CNIEE15	CNIEE14	CNIEE13	CNIEE12	_	—	—	—	-	—	—	_	—	—	—	—	0000
CNPUE	0E4A	CNPUE15	CNPUE14	CNPUE13	CNPUE12	_	_		—	_	_		_	—	-	—	_	0000
CNPDE	0E4C	CNPDE15	CNPDE14	CNPDE13	CNPDE12	_	_	_	_	-	_	—	_	—	_	_	_	0000
ANSELE	0E4E	ANSE15	ANSE14	ANSE13	ANSE12		—	_	—	_	_	_			_		_	F000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

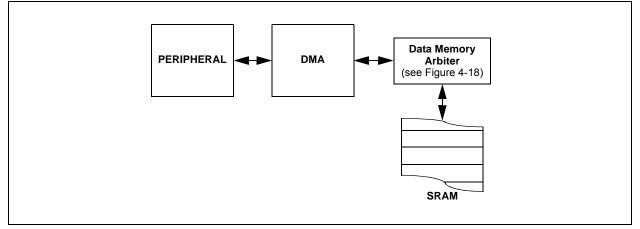
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	—	-	—		—		—	-	-	—	-	-	—	-	TRISF1	TRISF0	0003
PORTF	0E52	—	—	_	—	—	—	—	_	—	—	—	—	—	—	RF1	RF0	xxxx
LATF	0E54	—	—	—	—	—	—	—	—	—	—	—	—	—	—	LATF1	LATF0	xxxx
ODCF	0E56	_	-	_	-	—	-	—			—			_	-	ODCF1	ODCF0	0000
CNENF	0E58		_	-		—	-	_	-	-	—	-	-	—	-	CNIEF1	CNIEF0	0000
CNPUF	0E5A	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	_	_	_	-		_	_	_	_	_	_	_	-	CNPDF1	CNPDF0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER MODULE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	12. 2007.00						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	כ'				
bit 3	RQCOL3: DN	/IA Channel 3 T	ransfer Requ	est Collision F	ag bit		
		e and interrupt est collision is d		st collision is d	etected		
h # 0	•			est Callisian Fl	aa hit		
bit 2		/IA Channel 2 T ce and interrupt	•		0		
		e and interrupt est collision is d			elecieu		
bit 1	RQCOL1: DN	/IA Channel 1 T	ransfer Requ	est Collision Fl	ag bit		
	1 = User for	e and interrupt	-based reque	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 0	RQCOLO: DN	/IA Channel 0 T	ransfer Requ	est Collision F	lag bit		
	1 = User force	e and interrupt	-based reque	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	•				•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				OCFAR<6:0>	>		
bit 7	•						bit 0
Leaend:							

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
r							
Legend:		HS = Hardware		C = Clearable			
R = Readable I		W = Writable b	bit	•	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	-	ted: Read as '0				.,	
bit 13		Position Counte	er Greater Tha	n or Equal Cor	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i						
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	ire Interrunt En	ahla hit	
	1 = Interrupt i						
	0 = Interrupt i						
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	itus bit			
	1 = Overflow						
		ow has occurred					
bit 8		Position Counte	r Overflow Inte	errupt Enable b	Dit		
	1 = Interrupt i 0 = Interrupt i						
bit 7	•	tion Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitialize	•		· · · · · · · ·		
	0 = POS1CN	T was not reiniti	alized				
bit 6	PCIIEN: Posi	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i						
bit 5	0 = Interrupt i		r Overflow Sta	tuo hit			
DIL 5	1 = Overflow	Velocity Counter	I Overnow Sta				
		ow has not occu	irred				
bit 4	VELOVIEN:	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 3		atus Flag for Ho		us bit			
		ent has occurred event has occu					

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno		nown		
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
			POSCN	IT<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			POSCN	IT<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	POSCNT<7:0>						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSHL	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno		nown		

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit 0			
Legend:		HC = Hardware	Cloarable bit							
R = Readab	le hit	W = Writable bi		II = I Inimpler	mented bit, rea	d as '0'				
-n = Value a		'1' = Bit is set	L .	'0' = Bit is cle		x = Bit is unk	nown			
							nown			
bit 15	12CEN: 12Cx	Enable bit								
		he I2Cx module					;			
	0 = Disables	the I2Cx module;	all l ² C™ pins	are controlled	by port functior	ıs				
bit 14	Unimplemen	ted: Read as '0'								
bit 13		x Stop in Idle Mo								
		ues module oper s module operation			dle mode					
bit 12		•		_	(clave)					
		SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Releases SCLx clock								
		0 = Holds SCLx clock low (clock stretch)								
	If STREN = 1	If STREN = 1:								
	•	t is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear the beginning of every slave data byte transmission. Hardware is clear at the end of every slave								
		reception. Hardw					t every slave			
	If STREN = 0	-								
		<u>.</u> , software can or	nly write '1' to re	elease clock). I	Hardware is cle	ar at the begir	ning of every			
	-	te transmission.			-	address byte re	eception.			
bit 11		ligent Peripheral								
		 1 = IPMI mode is enabled; all addresses are Acknowledged 0 = IPMI mode disabled 								
bit 10			i+							
		A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address								
	1 = 12CxADD is a 10-bit slave address 0 = 12CxADD is a 7-bit slave address									
bit 9	DISSLW: Dis	ISSLW: Disable Slew Rate Control bit								
		1 = Slew rate control is disabled								
		control is enable								
bit 8		us Input Levels b		0145	c					
		/O pin thresholds SMBus input thre		n SMBus speci	fication					
bit 7		ral Call Enable b		ing as I ² C slav	/e)					
	1 = Enables in	terrupt when a ge all address disat	neral call addre	-		dule is enabled	for reception)			

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0			
bit 15	I	•					bit 8			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0			
bit 7							bit			
Logondi										
Legend: R = Readable	- hit		hit.		nonted hit rea	d aa 'O'				
-n = Value at		W = Writable		'0' = Bit is cle	mented bit, rea					
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN			
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12-8	=	Filter Hit Num								
		1 = Reserved								
	01111 = Filter 15									
	•									
	•									
	• 00001 = Filter 1									
	00001 = Filter 1 $00000 = Filter 0$									
bit 7		ted: Read as '	0'							
bit 6-0	-									
	ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved									
	1000100 = FIFO almost full interrupt									
		eceiver overflo								
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ							
	1000000 = N									
	•									
	•									
	•									
		11111 = Rese								
	0001111 = RB15 buffer interrupt									
	•									
	0001001 = R	B9 buffer inter	rupt							
		B8 buffer inter								
		RB7 buffer inte RB6 buffer inte								
		RB5 buffer inte								
		RB4 buffer inte								
	0000011 = T	RB3 buffer inte	errupt							
		RB2 buffer inte RB1 buffer inte								

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend:C = WritableR = Readable bitW = Writable					n to clear the bit mented bit, read		
							
bit 7							bit 0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
bit 15	•						bit 8
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state
	0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state
h:+ 0	0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit o	1 = Transmitter or receiver is in Error Warning state
	0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
hit O	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

-n = Value at POR

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a То comprehensive reference source. complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 27-1.

30.1 DC Characteristics

			Maximum MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating		Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range		-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$		Pint + Pi/o		W	
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation		(TJ – TA)/θJA			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0	—	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θJA	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	—	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	Conditions			
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	9	15	mA	-40°C			
DC20a	9	15	mA	+25°C	3.3V	10 MIPS	
DC20b	9	15	mA	+85°C	3.3V		
DC20c	9	15	mA	+125°C			
DC22d	16	25	mA	-40°C			
DC22a	16	25	mA	+25°C	3.3V	20 MIPS	
DC22b	16	25	mA	+85°C			
DC22c	16	25	mA	+125°C			
DC24d	27	40	mA	-40°C		40 MIPS	
DC24a	27	40	mA	+25°C	3.3V		
DC24b	27	40	mA	+85°C	3.3 V		
DC24c	27	40	mA	+125°C			
DC25d	36	55	mA	-40°C			
DC25a	36	55	mA	+25°C	3.3V	60 MIPS	
DC25b	36	55	mA	+85°C			
DC25c	36	55	mA	+125°C	7		
DC26d	41	60	mA	-40°C			
DC26a	41	60	mA	+25°C	3.3V	70 MIPS	
DC26b	41	60	mA	+85°C			

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

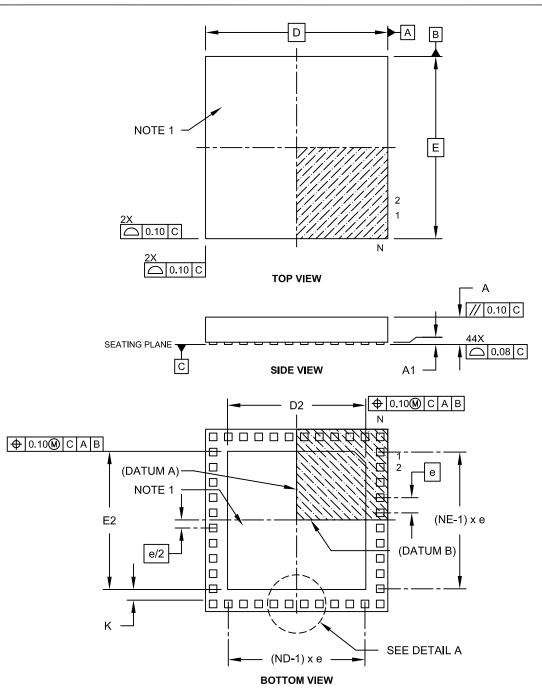
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	
			400 kHz mode	1.3	—	μS	
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	
	Setup Time	Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
IS26	26 THD:DAT Data Inpu Hold Time	Data Input	100 kHz mode	0	—	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	_	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μS	
		Hold Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.25		μS	
IS40		Output Valid	100 kHz mode	0	3500	ns	
	From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μs	can start
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)


Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2

Section Name	Update Description				
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:				
Characteristics" (Continued)	Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)				
	 Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42) 				
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)				
	These SPI1 Timing Requirements were updated:				
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)				
	Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)				
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50) 				
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).				
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).				
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).				
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).				
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).				
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).				
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).				

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)