

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gp506-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

IABLE 4-2	TABLE 4-21: ECANT REGISTER MAP WHEN WIN (CTCTRL1<0>) = 0 OR 1 FOR dSPIC33EPXXXMC/GP50X DEVICES ONLY																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPM	/IODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	—	_	_	_	—	_	—	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	—	—		F	ILHIT<4:0>			—			•	ICODE<6:0	>			0040
C1FCTRL	0406	C	DMABS<2:0	>		_	—	—	—	_	_	_			FSA<4:0>			0000
C1FIFO	0408		—			FBP<5:0>			_	_		FNRB<5:0>			0000			
C1INTF	040A		—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—		_	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>				RERRCNT<7:0>						0000		
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SI	=G2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSł	<<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MS	K<1:0>	F1MSH	<<1:0>	F0MS	<<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<<1:0>	F8MSI	<<1:0>	0000

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440							E	CAN1 Rece	eive Data Wo	ord							xxxx
C1TXD	0442							E	CAN1 Trans	smit Data Wo	ord							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Drierity	MSTRPR<15:0> Bit Setting ⁽¹⁾						
Priority	0x0000	0x0020					
M0 (highest)	CPU	DMA					
M1	Reserved	CPU					
M2	Reserved	Reserved					
M3	DMA	Reserved					
M4 (lowest)	ICD	ICD					

Note 1: All other values of MSTRPR<15:0> are reserved.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pir Select Input Register Value		Pin Assignment
000 0000	I	Vss	010 1101		RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	_
000 0100	I	C4OUT ⁽¹⁾	011 0001		_
000 0101	—	_	011 0010	_	_
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	I	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	_	_	011 0111	I/O	RP55
000 1011	_	_	011 1000	I/O	RP56
000 1100	—	—	011 1001	I/O	RP57
000 1101	_		011 1010	I	RPI58
000 1110	—	—	011 1011	_	—
000 1111	—	—	011 1100	_	—
001 0000	—	_	011 1101	—	_
001 0001	—	—	011 1110	_	—
001 0010	—	—	011 1111	—	—
001 0011	—	_	100 0000	—	_
001 0100	I/O	RP20	100 0001	_	—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	_	—
001 0111	—	—	100 0100	_	—
001 1000	I	RPI24	100 0101	_	—
001 1001	I	RPI25	100 0110	_	—
001 1010	—	—	100 0111		—
001 1011	I	RPI27	100 1000	_	_
001 1100	I	RPI28	100 1001	_	
001 1101	—	_	100 1010	_	_
001 1110	—		100 1011	_	
001 1111	—		100 1100	—	_
010 0000	I	RPI32	100 1101	—	_
010 0001	I	RPI33	100 1110	_	_
010 0010	I	RPI34	100 1111	_	
010 0011	I/O	RP35	101 0000	_	<u> </u>
010 0100	I/O	RP36	101 0001	—	_
010 0101	I/O	RP37	101 0010	—	_
010 0110	I/O	RP38	101 0011	—	_
010 0111	I/O	RP39	101 0100	_	_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC3R<6:0>			
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 =	nput tied to RPI nput tied to CMI nput tied to Vss	⊃1				
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6-0	(see Table 1	Assign Input Ca 1-2 for input pin nput tied to RPI	selection nun		onding RPn Pi	n bits	

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
r							
Legend:		HS = Hardware		C = Clearable			
R = Readable I		W = Writable b	bit	•	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	-	ted: Read as '0				.,	
bit 13		Position Counte	er Greater Tha	n or Equal Cor	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i						
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	ire Interrunt En	ahla hit	
	1 = Interrupt i						
	0 = Interrupt i						
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	itus bit			
	1 = Overflow						
		ow has occurred					
bit 8		Position Counte	r Overflow Inte	errupt Enable b	Dit		
	1 = Interrupt i 0 = Interrupt i						
bit 7	•	tion Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitialize	•		· · · · · · · ·		
	0 = POS1CN	T was not reiniti	alized				
bit 6	PCIIEN: Posi	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i						
bit 5	0 = Interrupt i		r Overflow Sta	tuo hit			
DIL 5	1 = Overflow	Velocity Counter	I Overnow Sta				
		ow has not occu	irred				
bit 4	VELOVIEN:	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 3		atus Flag for Ho		us bit			
		ent has occurred event has occu					

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INTHL	D<31:24>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INTHL	D<23:16>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	.D<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTH	_D<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0				
bit 15	I	•					bit 8				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0				
bit 7							bit				
Logondi											
Legend:	- hit	W = Writable	hit.		nonted hit rea	d aa 'O'					
				'0' = Bit is cle	mented bit, rea						
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12-8	=	Filter Hit Num									
		1 = Reserved									
	01111 = Filte	r 15									
	•										
	•										
		- 1									
	00001 = Filte 00000 = Filte										
bit 7		ted: Read as '	0'								
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
		11111 = Rese									
		IFO almost full									
		eceiver overflo									
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ								
	1000000 = N										
	•										
	•										
	•										
		11111 = Rese									
	•	B15 buffer inte	inupt								
	•										
	•										
	0001001 = R	B9 buffer inter	rupt								
		B8 buffer inter									
		RB7 buffer inte RB6 buffer inte									
		RB5 buffer inte									
		RB4 buffer inte									
	0000011 = T	RB3 buffer inte	errupt								
		RB2 buffer inte RB1 buffer inte									

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

NOTES:

	23-2: Al	DICONZ. ADCI	CONTROL REG	ISIER Z			
R/W-0	R/W-	0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFO	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7	OWIT					Borim	bit
Legend:							
R = Readable	, hit	W = Writable	bit I	l – Llnimolo	monted hit rea	d oo 'O'	
					mented bit, read		
-n = Value at	POR	'1' = Bit is se	t 't)' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits		
	Value	VREFH	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VREF-				
	011	External VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimple	emented: Read as	ʻ0'				
bit 10	CSCNA	Input Scan Select	bit				
		ns inputs for CH0+		JXA			
	0 = Does	s not scan inputs	C .				
bit 9-8	CHPS<1	:0>: Channel Sele	ct bits				
		mode (AD21B = 1)		bits are Uni	mplemented ar	id are Read as	<u>'0':</u>
		nverts CH0, CH1, C					
		nverts CH0 and CH nverts CH0	11				
bit 7		Buffer Fill Status bit	(oply valid when F				
		C is currently filling t			ne user applicat	ion should acco	ee data in th
		half of the buffer	ne second hall of	ule bullet, u	ie usei applicat		555 Uala III li
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in th
	seco	ond half of the buffe	er				
bit 6-2	SMPI<4	:0>: Increment Rate	e bits				
		DDMAEN = 0:					
		Generates interrup					
	x1110 =	Generates interrup	ot after completion	of every 18	oth sample/conv	ersion operation	on
	•						
	•						
		Generates interrup					n
		Generates interrup	ot after completion	of every sa	imple/conversion	on operation	
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	1A address after a	omplotion o	of overy 32nd s	mplo/convorsi	on operation
		Increments the DN					
	•						
	•						
	•					., .	
	00001 -	Increments the DI	"A address offer a	omplation o	t avany 2nd aar		

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER	25-3: CM40	CON: COMPA	RATOR 4 CO	ONTROL RE	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	—	—	_	CEVT	COUT
bit 15							bit 8
R/W-0	DAM 0	U-0		U-0	U-0		R/W-0
	R/W-0	0-0	R/W-0	0-0	0-0	R/W-0	
EVPOL1	EVPOL0	—	CREF	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	iown
			•				
bit 15	CON: Comp	arator Enable b	bit				
		ator is enabled					
		ator is disabled					
bit 14	COE: Comp	arator Output E	nable bit				
		ator output is pr ator output is in		xOUT pin			
bit 13	CPOL: Com	parator Output	Polarity Select	bit			
		ator output is in					
	0 = Compara	ator output is no	ot inverted				
bit 12-10	Unimpleme	nted: Read as	'0'				
bit 9	CEVT: Com	parator Event b	it				
	interrup	ts until the bit is	cleared	POL<1:0> set	tings occurred;	disables future	triggers and
	•	ator event did i					
bit 8		parator Output					
	$\frac{\text{VVnen CPOL}}{1 = \text{VIN} + > \text{V}}$	<u>. = 0 (non-inver</u> /N-	ted polarity):				
	0 = VIN + < V						
	When CPOL	= 1 (inverted p	olarity):				
	1 = VIN+ < V						
	0 = VIN + > V	'IN-					
bit 7-6		>: Trigger/Ever		-			
	10 = Trigger		generated only			or output (while one polarity selected	
		L = 1 (inverted) -high transition		ator output.			
		L = 0 (non-inve -low transition		ator output.			
		/event/interrupt (while CEVT =		v on low-to-higl	n transition of th	e polarity selecte	ed comparato
		L = 1 (inverted		ator output.			
		L = 0 (non-inve -high transition		ator output.			
	00 = Trigger	/event/interrupt	generation is	disabled			
Note 1: In	puts that are se	lected and not a	available will be	e tied to Vss. S	See the "Pin Dia	agrams" sectior	n for available

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	ed) -40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)		
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns			
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)		
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)		
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

DC CH/	ARACTERIS	TICS	Standard Op (unless other Operating ten	rwise st	re -40°C ≤ TA	≤ +85°C	SV for Industrial C for Extended
Param No.	Symbol	Characteristic	Min.	Min. Typ. ⁽²⁾ Max.		Units	Conditions
Op Am	p DC Chara	cteristics					
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V	
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	VCM = AVDD/2
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV	
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	_	90	_	db	
CM44	los	Input Offset Current	_	-	_	_	See pad leakage currents in Table 30-11
CM45	lв	Input Bias Current	_	_	_	_	See pad leakage currents in Table 30-11
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ	
CM49a	VOADC	Output Voltage	AVss + 0.077		AVDD - 0.077	V	Ιουτ = 420 μΑ
		Measured at OAx Using ADC ^(3,4)	AVss + 0.037 AVss + 0.018		AVDD – 0.037 AVDD – 0.018	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ
CM49b	Vout	Output Voltage	AVss + 0.210	_	AVDD - 0.210	V	Ιουτ = 420 μΑ
		Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.100 AVss + 0.050	_	AVDD – 0.100 AVDD – 0.050	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ
CM51	RINT1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

AC CHA	RACTERIS	STICS	(unless		se stateo rature	i)⁽¹⁾ -40°C ≤ ⁻	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5.5	—	5.5	LSb	+85°C $<$ TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1	—	1	LSb	+85°C < TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10	_	10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5	—	5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5	—	5	LSb	+85°C < TA \leq +125°C (Note 2)
AD25a	—	Monotonicity	—				Guaranteed
		Dynamic	Performa	ance (12-	-Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68		dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250		kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3		bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
		ADC A	Accuracy	(12-Bit	Mode) ⁽¹⁾			
HAD20a	Nr	Resolution ⁽³⁾	12	2 Data B	its	bits		
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾		
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz		

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions				
		ADC A	ccuracy	(10-Bit I	Mode) ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits	
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1.25		1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
		Dynamic P	erforma	nce (10-	Bit Mode	e) ⁽²⁾	
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	N	ILLIMETER	s
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

Remappable Input for U1RX	
Reset System	123
Shared Port Structure	
Single-Phase Synchronous Buck Converter	
SPIx Module	
Suggested Oscillator Circuit Placement	31
Type B Timer (Timer2 and Timer4)	
Type B/Type C Timer Pair (32-Bit Timer)	
Type C Timer (Timer3 and Timer5)	
UARTx Module	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

C Compilers	
MPLAB XC Compilers	
Charge Time Measurement Unit. See CTMU.	
Code Examples	
IC1 Connection to QEI1 Input on	
Pin 43 of dsPIC33EPXXXMC206	
Port Write/Read	
PWMx Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	
Code Protection	
CodeGuard Security	379, 386
Configuration Bits	
Description	
Configuration Byte Register Map	
Configuring Analog and Digital Port Pins	
CPU	
Addressing Modes	
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL	
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	
Instruction Set	
Resources	
CTMU	
Control Registers	
Resources	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	51
Memory Map for dsPIC33EP128MC20X/50X,	
dsPIC33EP128GP50X Devices	54
Memory Map for dsPIC33EP256MC20X/50X,	
dsPIC33EP256GP50X Devices	55
Memory Map for dsPIC33EP32MC20X/50X,	
dsPIC33EP32GP50X Devices	52
Memory Map for dsPIC33EP512MC20X/50X,	
dsPIC33EP512GP50X Devices	56
Memory Map for dsPIC33EP64MC20X/50X,	
dsPIC33EP64GP50X Devices	53
Memory Map for PIC24EP128GP/MC20X/50X	
Devices	59

Memory Map for PIC24EP256GP/MC20X/50X		
Devices		60
Memory Map for PIC24EP32GP/MC20X/50X		
Devices		57
Memory Map for PIC24EP512GP/MC20X/50X	•••••	57
		~ ~
Devices		61
Memory Map for PIC24EP64GP/MC20X/50X		
Devices		58
Near Data Space		51
Organization, Alignment		51
SFR Space		
Width		
Data Memory	•••••	51
		440
Arbitration and Bus Master Priority	•••••	110
Data Space		
Extended X		109
Paged Memory Scheme		105
DC and AC Characteristics		
Graphs		475
DC Characteristics		
BOR		111
CTMU Current Source Requirements		
Doze Current (IDOZE) 4		
High Temperature		
I/O Pin Input Specifications		408
I/O Pin Output Specifications4	11,	470
Idle Current (IIDLE) 4		
Op Amp/Comparator Requirements		
Op Amp/Comparator Voltage Reference		
		457
Requirements		
Operating Current (IDD)		
Operating MIPS vs. Voltage 4		
Power-Down Current (IPD) 4		
Program Memory		412
Temperature and Voltage		468
Temperature and Voltage Specifications		
Thermal Operating Conditions		
Watchdog Timer Delta Current		
Demo/Development Boards, Evaluation and		407
		400
Starter Kits		
Development Support		
Third-Party Tools		400
DMA Controller		
Channel to Peripheral Associations		140
Control Registers		141
DMAXCNT		
DMAxCON		
DMAXPAD		
DMAXEAD		
DMAxSTA		
DMAxSTB		
Resources		
Supported Peripherals		139
Doze Mode		
DSP Engine		44
•		
E		

Ε

310
311
311
312
312
313
313

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.