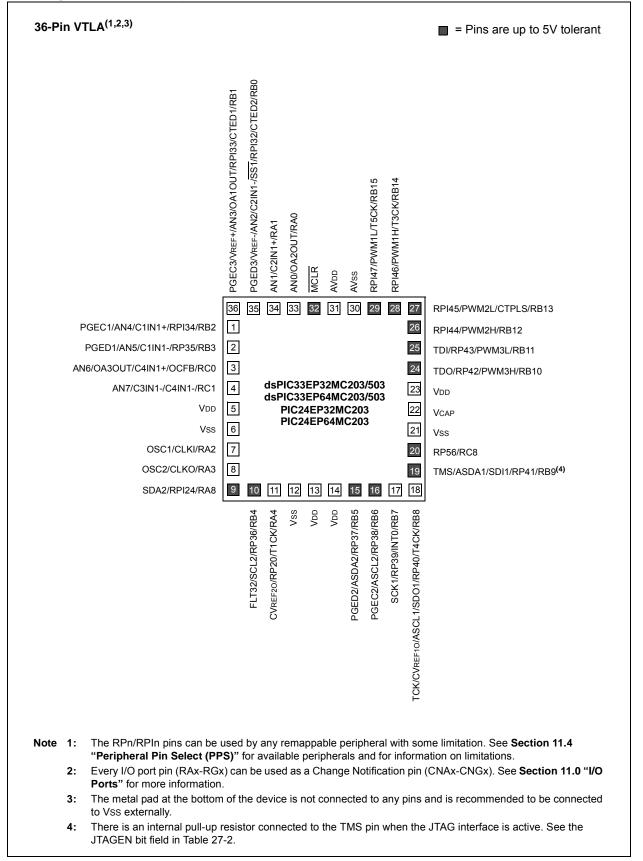


Welcome to E-XFL.COM

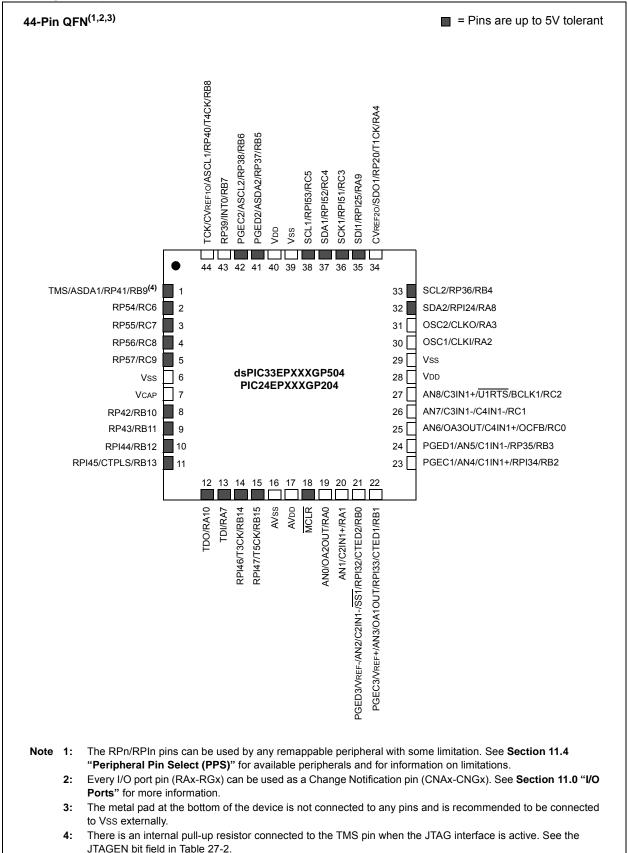
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

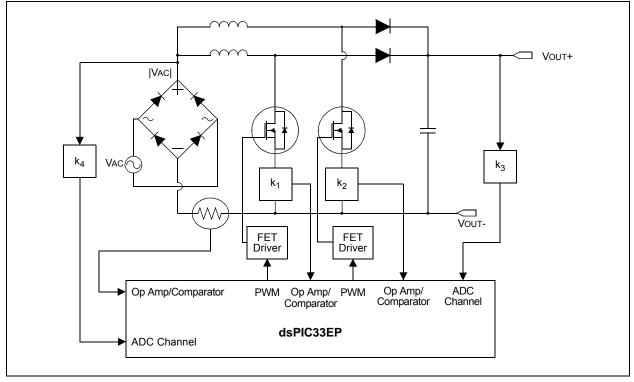
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

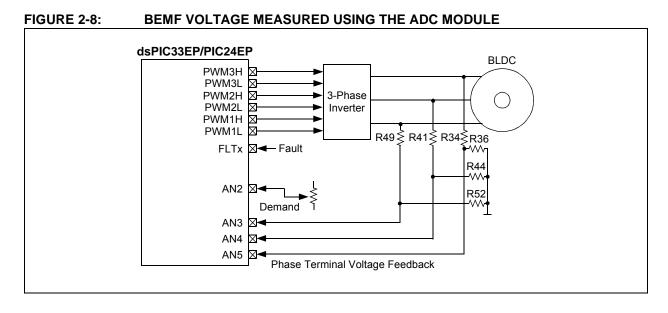

Details

Decalis	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc202-e-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams (Continued)



Pin Diagrams (Continued)

FIGURE 2-7: INTERLEAVED PFC

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_		_	_	_		_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	-	_	CTMUIF	_	_		—	_	_		_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		—	_	_		_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_		—	_	_		_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_		—	_	_		_	_	_	_	_	_	0000
IFS9	0812	_	_	_	-	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	—	-	_		—	—	_	IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	-	_	QEI1IE	PSEMIE	—	_	_	—	—	-	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	-	_		—	—	_	_	—	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—	-	_	_	_	—	_	_	—	_		_	—		0000
IEC6	082C	_	_	_	-	_	_	_	—	_	_	—	_	-	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	-	_	_	_	—	_	_	—	_	-	_	_	—	0000
IEC9	0832	_	_	_	-	_	_	_	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>				INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		-	[DMA0IP<2:0>		4444
IPC2	0844	_	-	U1RXIP<2:0	>	_	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	-		T3IP<2:0>		4444
IPC3	0846	_	_	_	—	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		-		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	—	_		—	—	_	_	—	—	-		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0)>			OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>			INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_	_	_	—	_		—	—	_		SPI2IP<2:0>	•	-	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_	_		_		IC4IP<2:0	>	_		IC3IP<2:0>		-	[DMA3IP<2:0>		0444
IPC12	0858	_	_	_		_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	-	_	—		0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866	_	_	—	—	_	—	—	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC23	086E	_	F	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	_	_	—	_	_	_	_	4400
IPC24	0870	_	_			_		_			_	_	_	_	F	PWM3IP<2:0>		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	—		_	—	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	—		_	—	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF	_	—		_	—	_	C1TXIF	_	—	CRCIF	U2EIF	U1EIF	—	0000
IFS6	080C	_	_	_	_	—		_	—	_	_	_	—	_	—	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—		_	—	_	_	_	—	_	—	_	—	0000
IFS9	0812			_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824			_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	—	—		_		_	_	_			—	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	—				_	—	C1TXIE			CRCIE	U2EIE	U1EIE		0000
IEC8	0830	JTAGIE	ICDIE	—	—		_		_	_	_			—	_	_	_	0000
IEC9	0832	_	_	—	—		_		_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840			T1IP<2:0>	>	_	(OC1IP<2:0	>	_		IC1IP<2:0>		_		NT0IP<2:0>		4444
IPC1	0842			T2IP<2:0>	>	_	(C2IP<2:0	>	_		IC2IP<2:0>		_	D	MA0IP<2:0>		4444
IPC2	0844		ι	J1RXIP<2:0	0>	_	Ş	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846			_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		_	U	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0	>	_		CMIP<2:0	>	_	I	WI2C1IP<2:0	>	_	S	I2C1IP<2:0>		4444
IPC5	084A			_	_	_	_	_	_	_	_	_	_	_		NT1IP<2:0>		0004
IPC6	084C			T4IP<2:0>	>	_	(C4IP<2:0	>	_		OC3IP<2:0>		_	D	MA2IP<2:0>		4444
IPC7	084E		ι	U2TXIP<2:()>	_	L	I2RXIP<2:	0>	_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850			C1IP<2:0>	>	_	C	1RXIP<2:	0>	_		SPI2IP<2:0>	•	_	S	PI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	D	MA3IP<2:0>		0444
IPC11	0856	_	_	_	_	_		_	—	_	_	_	—	_	_	_	_	0000
IPC12	0858	_	_	_	_	_	N	II2C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	_	_	_	_	C	1TXIP<2:)>	_	_	_	—	_	_	_	_	0400
IPC19	0866	_	_	—	_	_		_	—	_		CTMUIP<2:0	>	_	—			0040
IPC35	0886	_		JTAGIP<2:0)>	_		ICDIP<2:0	>	_	—	—	_	_	—	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	_	PT	GWDTIP<	2:0>	_	PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	_	_	_	_	_	F	TG3IP<2:)>	_		PTG2IP<2:0	>	_	Р	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
FORCE ⁽¹⁾		_	_	—		_			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0		
bit 7							bit		
Legend:		S = Settable b	oit						
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾						
	1 = Forces a	single DMA tra	insfer (Manua	l mode)					
	0 = Automatic DMA transfer initiation by DMA request								
bit 14-8	t 14-8 Unimplemented: Read as '0'								
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Num	ber Select bits					
		ECAN1 – TX D		2)					
		IC4 – Input Ca							
		IC3 – Input Ca							
		ECAN1 – RX D SPI2 Transfer I	-						
		UART2TX – UA		itter					
		UART2RX – U							
		TMR5 – Timer5							
	00011011 =	TMR4 – Timer4	1						
		OC4 – Output (
		OC3 – Output (
		ADC1 – ADC1							
		UART1TX – UA							
	00001011 = UART1RX – UART1 Receiver 00001010 = SPI1 – Transfer Done								
	00001010 = TMR3 - Timer3								
		TMR2 – Timer2							
		OC2 – Output (
		IC2 – Input Ca							
	00000010 = OC1 – Output Compare 1								
		IC1 – Input Ca							
	00000000 =	INT0 – Externa	I Interrupt 0						

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0	-	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ^(1,3)	—
bit 7							bit 0

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Tin	nery On bit ⁽¹⁾		
		s 16-bit Timery s 16-bit Timery		
bit 14	•	mented: Read as '0'		
bit 13	-	imery Stop in Idle Mode bit ⁽²	2)	
		ontinues module operation winues module operation in Id	hen device enters Idle mode lle mode	
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumu	lation Enable bit ⁽¹⁾	
	When TC This bit is	<u>CS = 1:</u> s ignored.		
		<u>CS = 0:</u> d time accumulation is enab d time accumulation is disab		
bit 5-4	TCKPS<	1:0>: Timery Input Clock Pre	escale Select bits ⁽¹⁾	
	11 = 1:2 5			
	10 = 1:64 01 = 1:8	1		
	01 = 1.8			
bit 3-2	Unimple	mented: Read as '0'		
bit 1	-	nery Clock Source Select bit	(1,3)	
		nal clock is from pin, TyCK (nal clock (FP)	(on the rising edge)	
bit 0	Unimple	mented: Read as '0'		
		peration is enabled (T2CON set through TxCON.	<3> = 1), these bits have no e	ffect on Timery operation; all ti

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	lled low externally in order to clear and disable the fault egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
-	d polarity using the IOCON1 register gister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0 OSYNC: Output Override Synchronization bit
 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC<31:24>			
						bit 8
	DAMO				DAMO	
R/W-U	R/W-0			R/W-U	R/W-U	R/W-0
		QEIGE	EC<23:16>			
						bit (
	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'	
२	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	R/W-0	W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet. refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows the ADC module to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode
- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable conversion Trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+
R = Readable	a hit	W = Writable b			nented bit, read		L
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.
	FUR	I - DILIS SEL			aieu		
bit 15	ADON: ADO	C1 Operating M	ode bit				
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng				
bit 14	Unimpleme	nted: Read as	' 0 '				
bit 13	ADSIDL: A	DC1 Stop in Idle	e Mode bit				
	1 = Disconti	nues module oj	peration when o	device enters	ldle mode		
	0 = Continu	es module oper	ation in Idle mo	ode			
bit 12		: DMA Buffer B					
						rovides an addre	ess to the DM
						nd-alone buffer des a Scatter/Ga	ther address t
						size of the DMA b	
bit 11		nted: Read as					
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit			
		-channel ADC	-				
	0 = 10-bit, 4	-channel ADC	operation				
bit 9-8	FORM<1:0>	Data Output I	Format bits				
	For 10-Bit C						
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .I	NOT.d<9>)	
		l integer (DOUT			where $s = .NC$	(<9>)	
		r (Dout = 0000					
	For 12-Bit C	peration:					
	•	fractional (Dou			0, where s = .I	NOT.d<11>)	
		nal (Dout = dd I integer (Dout				(<11>)	

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample MUXA bit In 12-bit mode (AD21B = 1), CH123SA is Unimplemented and is Read as '0':

Value		ADC Channel					
value	CH1 CH2 CH3						
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6				
0 (1,2)	OA2/AN0	AN1	AN2				

Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG f,#bit4		Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED))
		CONTINUED	,

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

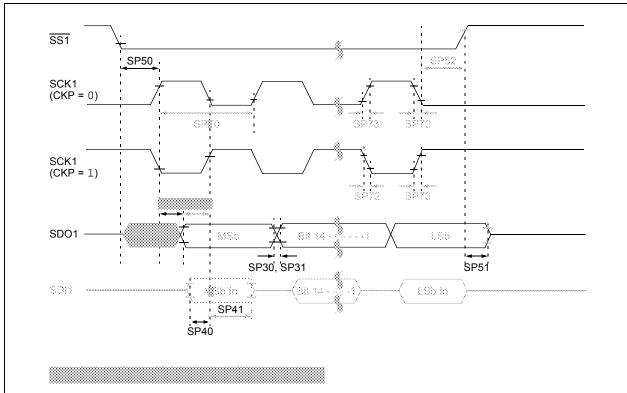
DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units Conditions		
DO10 V	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
DO20A	Voh1	H1 Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			2.0 ⁽¹⁾	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0(1)		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5 ⁽¹⁾	—	—	V	$IOH \geq -22 mA, VDD = 3.3 V$	
			2.0 ⁽¹⁾	_	—		IOH \geq -18 mA, VDD = 3.3V	
			3.0(1)	_	—	1	IOH \geq -10 mA, VDD = 3.3V	

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15


TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	mbol Characteristic		Тур.	Max.	Units	Conditions		
	-	Cloci	k Paramet	ters					
AD50	TAD	ADC Clock Period	117.6	_	_	ns			
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns			
	•	Conv	version R	ate					
AD55	tCONV	Conversion Time	_	14 Tad		ns			
AD56	FCNV	Throughput Rate	_	_	500	ksps			
AD57a	TSAMP	Sample Time when Sampling any ANx Input	3 Tad	—	_				
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	3 Tad	—	-				
		Timin	g Parame	ters					
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	-	3 Tad	—	Auto-convert trigger is not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3)	2 Tad	—	3 Tad				
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)		0.5 Tad	—				
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μS	(Note 6)		

TABLE 30-60: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- **6:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	Id: XXX Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code (e3) Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator can be found on the outer packaging for this package.			
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			