

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E		F	PWM2IP<2:0)>		Р	WM1IP<2:	0>			_		—	_	-		4400
IPC24	0870		_	_	_	-	_	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004
IPC35	0886			JTAGIP<2:0	>	-		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888		I	PTG0IP<2:0)>	-	PT	GWDTIP<	2:0>	_	P	GSTEPIP<2:	:0>	_	_	_	_	4440
IPC37	088A	_	_		—	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	•	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_	_				_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—		—	_	_	_				DAE	DOOVR	_	—	_		0000
INTCON4	08C6	_	_		—	_	_	_	_	_		_	_	—	—	_	SGHT	0000
INTTREG	08C8	_	—	-	—		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680				RP35R<5:0>					_	—		RP20R<5:0>						
RPOR1	0682	_	_		RP37R<5:0>					_			RP36F	<5:0>			0000		
RPOR2	0684	_	_		RP39R<5:0>					_	RP38R<5:0>						0000		
RPOR3	0686	_	_			RP41	R<5:0>				_	RP40R<5:0>					0000		
RPOR4	0688	_	_			RP43	R<5:0>				_	RP42R<5:0>					0000		
RPOR5	068A	_	—		RP55R<5:0>				_	—	RP54R<5:0>					0000			
RPOR6	068C	_	—		RP57R<5:0>				_	—			RP56F	R<5:0>			0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8						Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_		RP35R<5:0>					_	_		•	RP20F	R<5:0>			0000
RPOR1	0682	_				RP37F	R<5:0>			_	_		RP36R<5:0>					0000
RPOR2	0684	_	—			RP39F	२<5:0>			_	_			RP38	R<5:0>			0000
RPOR3	0686	_	—			RP41F	२<5:0>			_	_	RP40R<5:0>						0000
RPOR4	0688	_	_			RP43F	२<5:0>			—	_			RP42	R<5:0>			0000
RPOR5	068A	_	_			RP55F	२<5:0>			—	_		RP54R<5:0>					0000
RPOR6	068C	_	_			RP57F	२<5:0>			—	_			RP56	R<5:0>			0000
RPOR7	068E	_	_		RP97R<5:0>					—	_	_	_	_	_	_	_	0000
RPOR8	0690		_		RP118R<5:0>					_	_	—	_	—	_	—	_	0000
RPOR9	0692	—	_	_						_	_			RP120	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	_	_	-	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	_	_	_	-	03C0
PORTG	0E62			-	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64			-	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			-	_	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	_	_	_	0000
CNENG	0E68			-	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A			-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	_	_	_			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	-	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15		•					bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7		•					bit 0

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

VAR: Variable Exception Processing Latency Control
 1 = Variable exception processing is enabled
0 = Fixed exception processing is enabled
IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	Sleep mode	
PWRSAV	#IDLE_MODE	;	Put	the	device	into	Idle mode	

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

				DD20			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
				RP35	iR<5:0>		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0

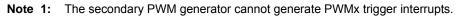
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP37	′R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP36	R<5:0>		
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGD	V<3:0>		—		—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				TRGSTF	RT<5:0> (1)		
bit 7							bit
Legend:	1. 1.4						
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12)>: Trigger # Ou	-				
		per output for ev					
		ger output for ev					
		ger output for ev					
		ger output for ev ger output for ev					
		ger output for ev					
		ger output for ev					
		per output for ev					
		per output for ev					
		ger output for ev					
		ger output for ev					
	0100 = Trigg	ger output for ev	ery 5th trigge	r event			
		ger output for ev					
		ger output for ev					
		ger output for ev					
	0000 = Trigg	ger output for ev	ery trigger ev	ent			
bit 11-6	-	nted: Read as '					
bit 5-0	TRGSTRT<	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾		
	111111 = W	aits 63 PWM cy	cles before g	enerating the fir	st trigger event	after the modu	le is enable
	•			·			
	•			-			
	•			-			
	• • •	aits 2 PW/M ava	les hefore co	nerating the fire	t trigger event :	after the module	a is anabled
		/aits 2 PWM cyc /aits 1 PWM cyc					

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽	¹⁾	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15				•			bit 8
			D AMA	D 444 0	D 444 0	D 444.0	D 444 0
R/W-0, H0		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
Legend:		HC = Hardwar	e Clearable b	it			
R = Reada	ble bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = UARTx is	ARTx Enable bit ⁽ s enabled; all UA s disabled; all UA	ARTx pins are				
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit				
		nues module opera			le mode		
bit 12	1 = IrDA enc	Encoder and De oder and decod oder and decod	er are enable	d			
bit 11	$1 = \overline{\text{UxRTS}} p$	le Selection for bin is in Simplex bin is in Flow Co	mode	t			
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	IARTx Pin Enab JxRX and BCLK JxRX, UxCTS ar JxRX and UxRT nd UxRX pins a atches	x p <u>ins are</u> ena nd UxRTS pin S pins are ena	s are enabled a abled and used;	nd used ⁽⁴⁾ UxCT <u>S pin is</u> c	controlled by PC	ORT latches ⁽⁴
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode Ei	nable bit		
	in hardwa	ontinues to sam are on the follow -up is enabled			generated on t	the falling edge	; bit is cleare
bit 6	1 = Enables	ARTx Loopback Loopback mode k mode is disab	:	bit			
2:	Refer to the " UAI enabling the UAR This feature is or	Tx module for realized for realized available for the second second second second second second second second s	eceive or trans the 16x BRG	mit operation. mode (BRGH =	-	ce Manual" for i	nformation or
	This feature is or	-	-	-			
A-	This fastura is ar	ny available on l	al nin dovicos				

4: This feature is only available on 64-pin devices.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit C
Legend:		HC = Hardward	e Clearable bit	C = Clearable bit			
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit
 - $\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle state is '0'}}$
 - 0 = UxTX Idle state is '1'
 - If IREN = 1:
 - 1 = IrDA encoded, UxTX Idle state is '1'
 - 0 = IrDA encoded, UxTX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: UARTx Transmit Break bit
 - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission is disabled or completed
- bit 10 UTXEN: UARTx Transmit Enable bit⁽¹⁾ 1 = Transmit is enabled, UxTX pin is controlled by UARTx
 - 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled by the PORT
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to the "**UART**" (DS70582) section in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UARTx module for transmit operation.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0				
bit 15	I	•					bit 8				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0				
bit 7							bit				
Logondi											
Legend: R = Readable	- hit		hit.		nonted hit rea	d aa 'O'					
-n = Value at		W = Writable		'0' = Bit is cle	mented bit, rea						
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12-8	=	Filter Hit Num									
		1 = Reserved									
	01111 = Filte	r 15									
	•										
	•										
	• 00001 = Filter 1										
	00001 = Filte										
bit 7		ted: Read as '	0'								
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
	1000101-1111111 = Reserved										
		IFO almost full									
		eceiver overflo									
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ								
	1000000 = N										
	•										
	•										
	•										
		11111 = Rese									
	0001111 = RB15 buffer interrupt										
	•										
	0001001 = R	B9 buffer inter	rupt								
		B8 buffer inter									
		RB7 buffer inte RB6 buffer inte									
		RB5 buffer inte									
		RB4 buffer inte									
	0000011 = T	RB3 buffer inte	errupt								
		RB2 buffer inte RB1 buffer inte									

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15	EID4 EID3 EID2 EID1 EID0 RTR U-x U-x R/W-x R/W-x R/W-x R/W-x — — RB0 DLC3 DLC2 DLC1		bit 8				
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Lonondi							
Legend:	l. h.:.		L.11			-l (O)	
-n = Value at POR '1' = Bit is set '0' =					ared	x = Bit is unkr	iown
bit 15-10	EID<5:0>: E	xtended Identifi	er bits				
bit 9	RTR: Remot	e Transmission	Request bit				
	When IDE =	1:					
	•		mote transmis	ssion			
		0					
h :+ 0		-					
bit 8			or CAN proto				
			-	0001.			
bit 7-5	•		0				
bit 4	RB0: Reserv						
	User must se	et this bit to '0' p	per CAN proto	ocol.			
hit 2 0		Jota Longth Co.	da hita				

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 0			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾

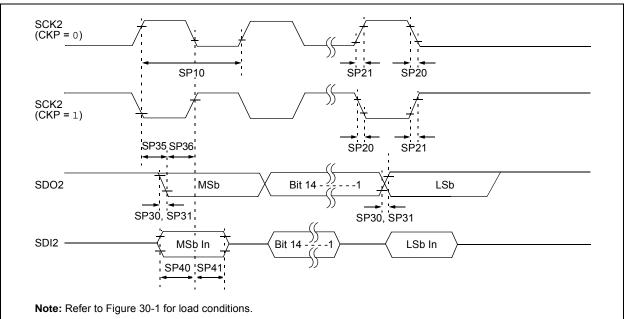
bit 7

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG Watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1:	These bits apply to the PTGWHI and PTGWLO commands only.
	2:	This bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0


NOTES:

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0	
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	
bit 15		•	·				bit 8	
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	
bit 7			•				bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe	
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit					
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 							
		•			ldle mode			
bit 12-8	0 = Continue VWORD<4:0:	s module opera	ation in Idle m e bits	ode				
bit 12-8	0 = Continue VWORD<4:0: Indicates the	s module opera	ation in Idle m e bits	ode		of 8 when PLE	N<4:0> > 7	
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module oper >: Pointer Valu number of valio	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7	
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7	
bit 12-8 bit 7 bit 6	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7	
bit 7	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is e	s module operatives >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7	
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull not full RC FIFO Empty empty not empty	ation in Idle m e bits d words in the t v Bit	ode		of 8 when PLE	N<4:0> > 7	
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull NC FIFO Empty empty not empty RC Interrupt Se	ation in Idle m e bits d words in the t v Bit election bit	ode FIFO. Has a m	naximum value		N<4:0> > 7	
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull AC FIFO Empty empty not empty RC Interrupt Secon FIFO is emptore on FIFO is emptore	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7	
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is compared	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7	
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is ft 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is compared	ation in Idle m e bits d words in the t election bit pty; final word plete and CRO	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7	
bit 7	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull Not full RC FIFO Empty mpty not empty RC Interrupt Secon FIFO is emponent on FIFO is emponent on shift is component t CRC bit	ation in Idle m e bits d words in the t / Bit election bit pty; final word plete and CRC	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7	
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC seri LENDIAN: Data 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit ull and full C FIFO Empty empty and empty RC Interrupt Secon on FIFO is emplor on shift is com t CRC bit RC serial shifter ial shifter is turn ata Word Little-	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Config	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7	
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wor 	s module operatives Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is empty C Interrupt Second on Shift is com- t CRC bit C serial shifter is turn at Word Little- d is shifted into	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Configo the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	naximum value shifting through are ready Sb (little endiar	CRC	N<4:0> > 7	
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wort 0 = Data wort 	s module operatives Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is empty C Interrupt Second on Shift is com- t CRC bit C serial shifter is turn at Word Little- d is shifted into	ation in Idle m e bits d words in the t d Bit election bit pty; final word plete and CRC r med off Endian Config the CRC star o the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	naximum value shifting through are ready	CRC	N<4:0> > 7	

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. Symbol Characteristic ⁽¹⁾ Mi			Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	 Corrects address range from 0x2FFF to 0x7FFF
	Corrects DSRPAG and DSWPAG (now 3 hex digits)
	Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program	Corrects descriptions of NVM registers
Memory"	
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
and PIC24EPXXXMC20X Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit™ (I ² C™)"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Unarautenstics	