

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

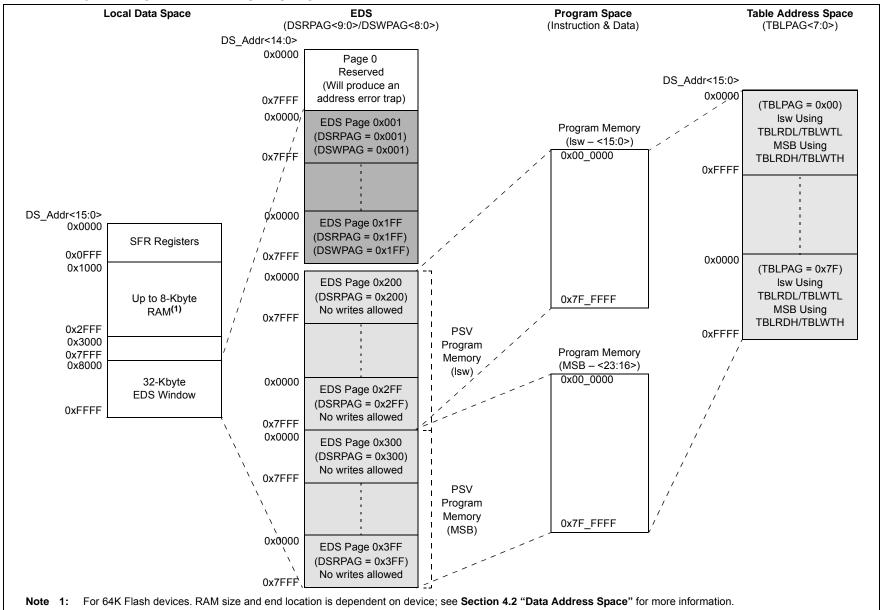
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

2000	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc204-e-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	'IN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BP<3:0>				F1BP	<3:0>		F0BP<3:0>				0000
C1BUFPNT2	0422		F7BF	><3:0>			F6BI	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442		EID<15:8>			EID			EID<	<7:0>				xxxx				
C1RXF1SID	0444	SID<10:3>				SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx					
C1RXF1EID	0446			EID<15:8>						EID<	7:0>				xxxx			
C1RXF2SID	0448			SID<10:3>			SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx				
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>				SID<2:0> —			—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE — EID<17:16>			17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF5SID	0454				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:1					17:16>	xxxx		
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>				SID<2:0> —			—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462					:15:8>				EID<			EID<	<7:0>				xxxx
C1RXF9SID	0464					:10:3>				SID<2:0> —			EXIDE — EID<17:16>			xxxx		
C1RXF9EID	0466					:15:8>							EID<					xxxx
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	12. 2007.00									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-4	Unimplemen	ted: Read as '	כ'							
bit 3	RQCOL3: DMA Channel 3 Transfer Request Collision Flag bit									
	 1 = User force and interrupt-based request collision is detected 0 = No request collision is detected 									
h # 0	•			est Callisian Fl	aa hit					
bit 2	RQCOL2: DMA Channel 2 Transfer Request Collision Flag bit									
	 1 = User force and interrupt-based request collision is detected 0 = No request collision is detected 									
bit 1	RQCOL1: DMA Channel 1 Transfer Request Collision Flag bit									
	1 = User force and interrupt-based request collision is detected									
	0 = No reque	est collision is d	etected							
bit 0	RQCOLO: DN	/IA Channel 0 T	ransfer Requ	est Collision F	lag bit					
	1 = User force	e and interrupt	-based reque	st collision is d	etected					

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pir Select Input Register Value		Pin Assignment
000 0000	I	Vss	010 1101		RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	_
000 0100	I	C4OUT ⁽¹⁾	011 0001		_
000 0101	—	_	011 0010	_	_
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	I	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	_	_	011 0111	I/O	RP55
000 1011	_	_	011 1000	I/O	RP56
000 1100	—	—	011 1001	I/O	RP57
000 1101	_		011 1010	I	RPI58
000 1110	—	—	011 1011	_	—
000 1111	—	—	011 1100	_	—
001 0000	—	—	011 1101	—	_
001 0001	—	—	011 1110	_	—
001 0010	—	—	011 1111	—	—
001 0011	—	—	100 0000	—	_
001 0100	I/O	RP20	100 0001		—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	_	—
001 0111	—	—	100 0100		—
001 1000	I	RPI24	100 0101	_	—
001 1001	I	RPI25	100 0110	_	—
001 1010	—	—	100 0111		—
001 1011	I	RPI27	100 1000	_	_
001 1100	I	RPI28	100 1001	_	
001 1101	—	_	100 1010	_	_
001 1110	—		100 1011	_	
001 1111	—		100 1100	—	_
010 0000	I	RPI32	100 1101	—	_
010 0001	I	RPI33	100 1110	_	_
010 0010	I	RPI34	100 1111	_	
010 0011	I/O	RP35	101 0000	_	<u> </u>
010 0100	I/O	RP36	101 0001	—	_
010 0101	I/O	RP37	101 0010	—	_
010 0110	I/O	RP38	101 0011	—	_
010 0111	I/O	RP39	101 0100	_	_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

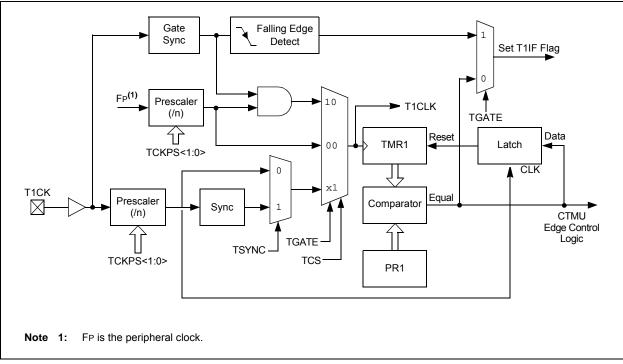
- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	x
Synchronous Counter	1	х	1
Asynchronous Counter	1	x	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	-	—	—		LEB	<11:8>		
bit 15	bit 15						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			LEE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)

- 1 = RX FIFO is empty
- 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

- 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)
 - 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty
 - 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
 - 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location
 - 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
 - 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
 - 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
 - 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

bit 5

bit 8

bit 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15		•		•	•	•	bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7	CKF	WIGTEN	SFREZ 7	SFREI?	SFREU 7	FFREN	bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as	0'								
bit 12			bit (SPIx Mas	-	()						
	1 = Internal SPIx clock is disabled, pin functions as I/O 0 = Internal SPIx clock is enabled										
oit 11	0 = Internal SPIx clock is enabled DISSDO: Disable SDOx Pin bit										
	1 = SDOx pin is not used by the module; pin functions as I/O										
	0 = SDOx pin is controlled by the module										
bit 10	MODE16: Wo	MODE16: Word/Byte Communication Select bit									
		1 = Communication is word-wide (16 bits)									
		0 = Communication is byte-wide (8 bits)									
bit 9	SMP: SPIx Data Input Sample Phase bit										
	Master mode	-	and of data of	utout time							
	 I = Input data is sampled at end of data output time Input data is sampled at middle of data output time 										
	Slave mode:										
	SMP must be cleared when SPIx is used in Slave mode.										
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾										
	1 = Serial output data changes on transition from active clock state to Idle clock state (refer to bit 6)										
bit 7	 0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6) SSEN: Slave Select Enable bit (Slave mode)⁽²⁾ 										
	1 = SSx pin is used for Slave mode										
	$1 = \frac{55x}{55x}$ pin is used for Slave mode 0 = SSx pin is not used by the module; pin is controlled by port function										
bit 6	CKP: Clock F	CKP: Clock Polarity Select bit									
			nigh level; activ ow level; active								
bit 5	MSTEN: Mas	ter Mode Enat	ole bit								
	1 = Master m 0 = Slave mo										
Note 1: T	he CKE bit is not	used in Frame	d SPI modes. I	Program this bi	it to '0' for Fram	ed SPI modes (FRMEN = 1				
	his bit must be cl										
0											

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

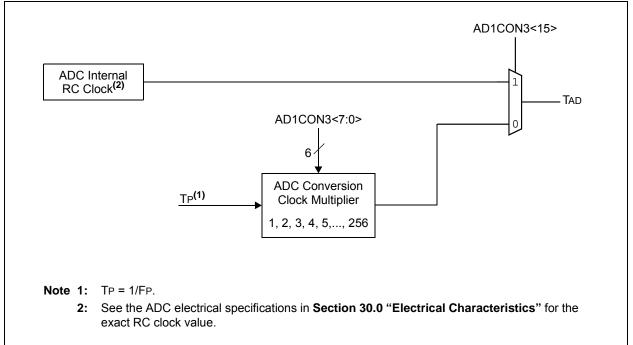
- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 21-20:	CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
	REGISTER (n = 0-2)

		-	-								
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3				
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
SID2	SID1	SID0	-	MIDE	_	EID17	EID16				
bit 7							bit C				
<u> </u>											
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	cleared x = Bit is unknown						
bit 15-5	SID<10:0>: S	Standard Identi	fier bits								
		bit, SIDx, in filte is a don't care i									
bit 4	Unimplemer	nted: Read as '	0'								
bit 3	MIDE: Identif	MIDE: Identifier Receive Mode bit									
	0 = Matches		or extended a	d or extended ac address messag SID/EID))		•					
bit 2	Unimplemer	nted: Read as '	0'								
bit 1-0	EID<17:16>:	Extended Iden	tifier bits								
		bit, EIDx, in fill is a don't care									

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

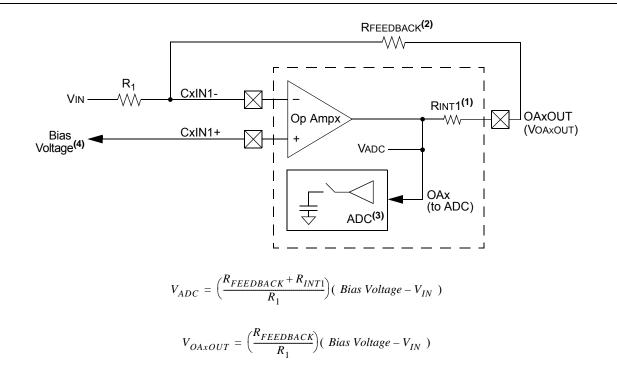
R = Readable bit W = Writable			bit	U = Unimpler	mented bit, read	as '0'	
Legend:							
bit 7							bit 0
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
							bit 0
bit 15	•	•		•	•	•	bit 8
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x


R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison


25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0		
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0		
bit 15	•	•					bit 8		
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—		
bit 7		•					bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe		
bit 14	Unimplemen	ted: Read as ')'						
bit 13	CSIDL: CRC Stop in Idle Mode bit								
		ues module op			ldle mode				
bit 12-8	VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7								
	Indicates the	number of valic LEN<4:0> \leq 7.	I words in the	FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
bit 7	Indicates the or 16 when P			FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
	Indicates the or 16 when P	LEN<4:0> \leq 7. C FIFO Full bit ull		FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r	LEN<4:0> \leq 7. C FIFO Full bit ull		FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is f 0 = FIFO is r CRCMPT : CF 1 = FIFO is e	LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty		FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
bit 7 bit 6	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is e 0 = FIFO is r	LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty not empty	Bit	FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> > 7		
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is f 0 = FIFO is f CRCMPT : CR 1 = FIFO is f 0 = FIFO is f CRCISEL : Cf	LEN<4:0> \leq 7. C FIFO Full bit not full C FIFO Empty empty not empty RC Interrupt Se	Bit lection bit				N<4:0> > 7		
bit 7 bit 6	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is f 0 = FIFO is r CRCMPT : CF 1 = FIFO is r CRCISEL : Cf 1 = Interrupt	LEN<4:0> \leq 7. C FIFO Full bit not full C FIFO Empty mpty not empty RC Interrupt Se on FIFO is empty	Bit lection bit oty; final word	of data is still s	shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is f 0 = FIFO is r CRCMPT : CF 1 = FIFO is r CRCISEL : Cf 1 = Interrupt	LEN<4:0> \leq 7. C FIFO Full bit ull act full RC FIFO Empty empty act empty RC Interrupt Se on FIFO is emp on shift is comp	Bit lection bit oty; final word	of data is still s	shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star	LEN<4:0> \leq 7. C FIFO Full bit ull act full RC FIFO Empty empty act empty RC Interrupt Se on FIFO is emp on shift is comp	Bit lection bit oty; final word olete and CR0	of data is still s	shifting through		N<4:0> > 7		
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser	LEN<4:0> \leq 7. C FIFO Full bit ull not full C FIFO Empty mpty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit RC serial shifter ial shifter is turr	Bit lection bit oty; final word olete and CRC	of data is still s CWDAT results	shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da	LEN<4:0> \leq 7. C FIFO Full bit ull not full C FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit RC serial shifter ial shifter is turr ata Word Little-	Bit lection bit oty; final word olete and CRC ned off Endian Config	of data is still s CWDAT results guration bit	shifting through are ready	CRC	N<4:0> > 7		
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da 1 = Data wor	LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit RC serial shifter ial shifter is turr ata Word Little- d is shifted into	Bit lection bit oty; final word olete and CRC ned off Endian Config the CRC star	of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	CRC	N<4:0> > 7		
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da 1 = Data wor 0 = Data wor	LEN<4:0> \leq 7. C FIFO Full bit ull not full C FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit RC serial shifter ial shifter is turr ata Word Little-	Bit lection bit oty; final word olete and CRC med off Endian Config the CRC star the CRC star	of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	CRC	N<4:0> > 7		

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12-8	DWIDTH<4:0	DWIDTH<4:0>: Data Width Select bits								
	These bits se	t the width of th	ne data word (DWIDTH<4:0>	• + 1).					
bit 7-5	Unimplemented: Read as '0'									

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTE	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	Units Conditi			
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	4EP32GP/MC20X		
DC60d	30	100	μA	-40°C			
DC60a	35	100	μA	+25°C	3.3V		
DC60b	150	200	μA	+85°C	3.3V		
DC60c	250	500	μA	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP64GI	P50X, dsPIC33EF	P64MC20X/50X and PIC2	4EP64GP/MC20X		
DC60d	25	100	μA	-40°C			
DC60a	30	100	μΑ	+25°C	3.3V		
DC60b	150	350	μΑ	+85°C	5.50		
DC60c	350	800	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	24EP128GP/MC20X		
DC60d	30	100	μΑ	-40°C			
DC60a	35	100	μΑ	+25°C	3.3V		
DC60b	150	350	μΑ	+85°C	5.5 V		
DC60c	550	1000	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	24EP256GP/MC20X		
DC60d	35	100	μΑ	-40°C			
DC60a	40	100	μΑ	+25°C	3.3V		
DC60b	250	450	μΑ	+85°C	5.5 V		
DC60c	1000	1200	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	24EP512GP/MC20X		
DC60d	40	100	μΑ	-40°C			
DC60a	45	100	μΑ	+25°C	3.3V		
DC60b	350	800	μΑ	+85°C	0.0 V		
DC60c	1100	1500	μA	+125°C			

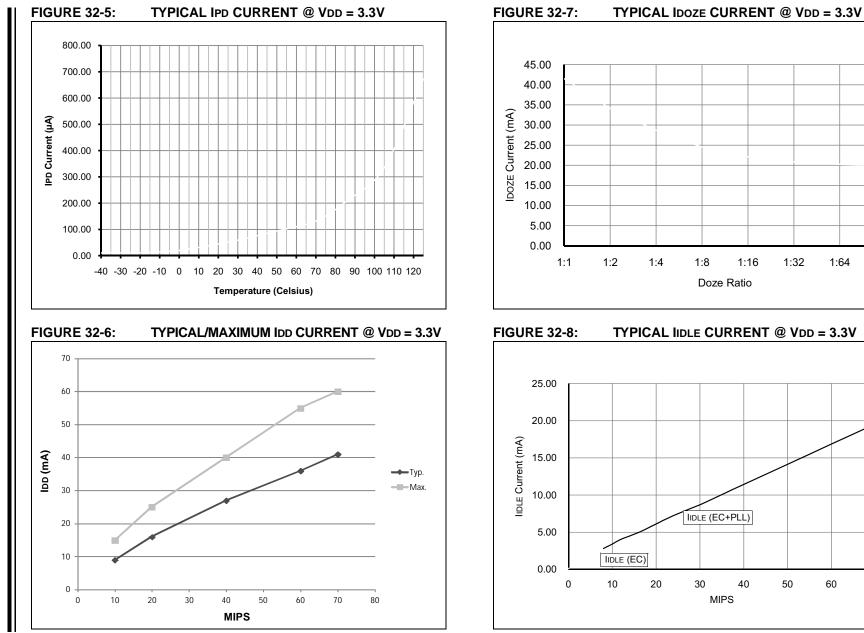
TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Op (unless othe Operating ter	rwise st	ated) e -40°C ⊴	≤ Ta ≤ +8	o 3.6V 35°C for Industrial 125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—		—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30		—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—		50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

1:128

70

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.