

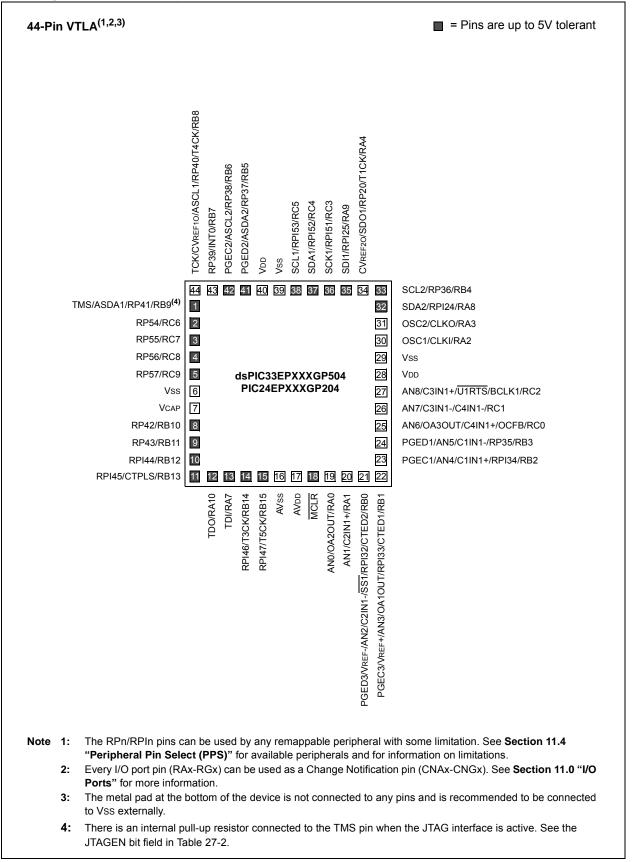
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

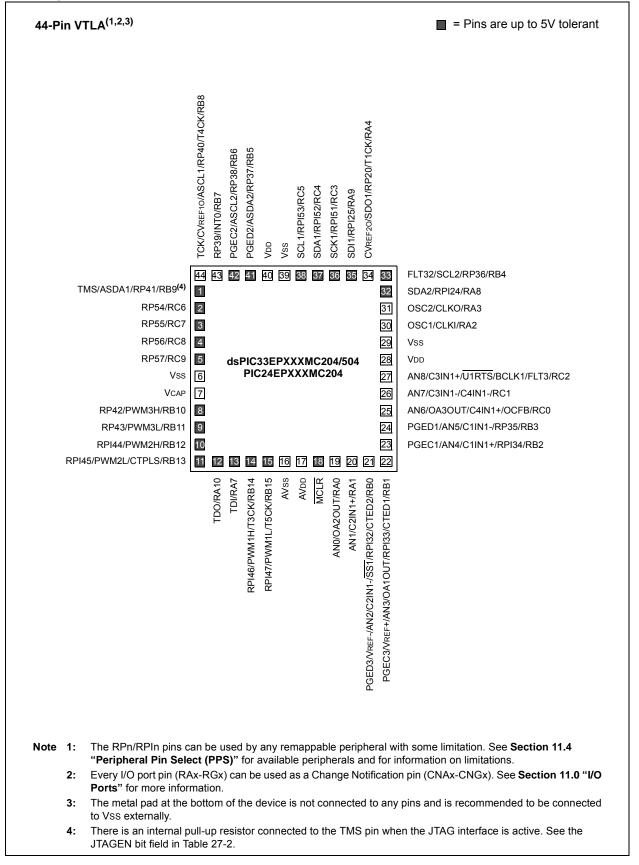
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XEI

Dectano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc204-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

1:	CPU C	ORE RE	EGISTEI	R MAP F	OR dsF	PIC33EP	XXXMC	20X/50X	(AND d	sPIC33	EPXXX	GP50X	DEVICE	S ONL	Y (CON	TINUE	D)
Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
0044	VAR	_	US<	:1:0>	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
0046	XMODEN	YMODEN	_	_		BWM	I<3:0>			YWM<	<3:0>	-		XWM<	<3:0>		0000
0048		•		•	•		XMC	DSRT<15:0)>								0000
004A							XMC	DEND<15:0)>								0001
004C							YMC	DSRT<15:0)>								0000
004E							YMC	DEND<15:0)>								0001
0050	BREN							XBF	REV<14:0>								0000
0052	—	_							DISICNT<	13:0>							0000
0054	_	_	TBLPAG<7:0>									0000					
0058				•	•	•	•	MSTRPR<	<15:0>								0000
	Addr. 0042 0044 0046 0048 0048 004A 004C 004C 004E 0050 0052 0054	Addr. Bit 15 0042 OA 0044 VAR 0046 XMODEN 0048 - 0044 - 0045 - 0046 BREN 0047 -	Addr. Bit 15 Bit 14 0042 OA OB 0044 VAR — 0046 XMODEN YMODEN 0048 —	Addr. Bit 15 Bit 14 Bit 13 0042 OA OB SA 0044 VAR — US<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 0042 OA OB SA SB 0044 VAR — US<1:0> 0046 XMODEN YMODEN — — 0048 —	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0042 OA OB SA SB OAB 0044 VAR — US<1:0> EDT 0046 XMODEN YMODEN — — 1000000000000000000000000000000000000	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0042 OA OB SA SB OAB SAB 0044 VAR — US<1:0> EDT 0046 XMODEN MODEN — — BWM 0048	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0042 OA OB SA SB OAB SAB DA 0044 VAR — US<1:0> EDT DL<2:0> 0046 XMODEN MODEN — — BWM<3:0> 0048 — — — BWM<3:0> XMC 0040 — — — BWM<3:0> XMC 0044 O — — — MC 0048 — — — — MC 00404 — — — — MC 00404 — — — — YMC 00404 — — — YMC YMC 00410 — — — YMC YMC 0050 BREN — — — — — 0051 — — <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN YMODEN — — BWM<3:0> XMODENDRT<15:0</td> 0048 — — XMODENDRT<15:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN YMODEN — — BWM<3:0> XMODENDRT<15:0	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 70042OAOBSASBOABSABDADCIPL20044VARUS<1:0>EDT $DL<2:0>$ SATA0046XMODENYMODENBWM<3:0>SATA0048 $$ BWM<3:0>SATA0044 $$ BWM<3:0>SATA0045 $$ BWM<3:0>SATA0046 $$ SATA0047 $$ $$ SATA0048 $$ $$ $$ 0047 $$ $$ $$ 0048 $$ $$ $$ 0049 $$ $$ $$ 0040 $$ $$ $$ 0041 $$ $$ $$ 0042 $$ $$ $$ 0043 $$ $$ $$ 0044 $$ $$ $$ 0050BREN $$ $$ $$ 0050BREN $$ $$ $$ 0051 $$ $$ $$ $$ 0052 $$ $$ $$ $$ 0054 $$ $$ $$ $$ 0054 $$ $$ $$ $$	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60042OAOBSASBOABSABDADCIPL2IPL10044VARUS<1:0>EDT $DL<2:0>$ SATASATB0046XMODENMODEN $BWM<3:0>$ VMODSRT<15:0>0048 $VMODEN$ $MMODENYWM0044VMODENMMODENYWM0045VMODENMMODENYWM0046VMODENMMODEN<15:0>YWM0047VMODENYMODEND<15:0>YWM0048VMODENYMODEND<15:0>YWM0049VMODENYMODEND<15:0>YMODEND0040VMODENYMODEND<15:0>YMODEND0050BRENVMODENUSICNT<13:0>00510054$	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW 0046 XMODEN YMODEN — — BUM<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT 0046 XMODEN MODEN BWM<3:0> YWM<-:-	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 0046 XMODEN YMODEN BWH<3:0> YWMUNCTIS:0> YWMUNCTIS:0> YWMUNCTIS:0> YWMUNCTIS:0> YWMUNCTIS:0> YWWUNCTIS:0> YWWUNC	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20042OAOBSASBOABSABDADCIPL2IPL1IPL0RANOV0044VAR-US<1:0-	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 SFA RND 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0> XWM<3:0> XWM<3:0	Addr. Bit 13 Bit 13 Bit 13 Bit 13 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0044 VAR - US<1:> EDT DL<2:> SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0046 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0048 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SAT RND IFF 0044 U VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN - - - -

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 64

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E		F	PWM2IP<2:0)>		Р	WM1IP<2:	0>			_		—	_	-		4400
IPC24	0870		_	_	_	-	_	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004
IPC35	0886			JTAGIP<2:0	>	-		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888		I	PTG0IP<2:0)>	-	PT	GWDTIP<	2:0>	_	P	GSTEPIP<2:	:0>	_	_	_	_	4440
IPC37	088A	_	_		—	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	•	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_	_				_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—		—	_	_	_				DAE	DOOVR	_	—	_		0000
INTCON4	08C6	_	_		—	_	_	_	_	_		_	_	—	—	_	SGHT	0000
INTTREG	08C8	_	—		—		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	'IN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BI	><3:0>		F1BP<3:0> F0BP<3:0>							0000	
C1BUFPNT2	0422		F7BF	><3:0>			F6BI	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>				EID<7:0>							xxxx	
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>		-		xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462					:15:8>							EID<	-				xxxx
C1RXF9SID	0464					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466					:15:8>							EID<					xxxx
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

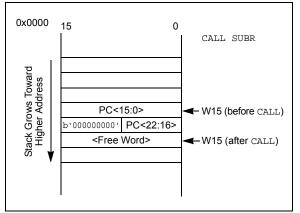
TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
pit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
pit 7							bit 0
_egend:							
R = Readable		W = Writable		U = Unimpleme			
n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable hit				
		nesting is disa					
	•	nesting is ena					
pit 14	-	-	Overflow Trap F	lag bit ⁽¹⁾			
			erflow of Accur				
	=		overflow of A				
pit 13			Overflow Trap F	•			
			erflow of Accur				
pit 12	-			Overflow Trap Fla	ag bit ⁽¹⁾		
	1 = Trap was	caused by ca	tastrophic over	flow of Accumula	ator A		
pit 11				Overflow Trap Fla			
			•	flow of Accumula	•		
	=		-	overflow of Accur	nulator B		
pit 10			erflow Trap Ena	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator A				
pit 9	OVBTE: Acc	umulator B Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum isabled	ulator B				
oit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit ⁽¹⁾			
	1 = Trap on o 0 = Trap is d		erflow of Accu	mulator A or B is	enabled		
oit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit ⁽¹⁾			
		•	•	alid accumulator invalid accumula			
oit 6	DIV0ERR: D	ivide-by-Zero I	Error Status bit				
			used by a divide caused by a d				
	DMACERR:			-			
oit 5							

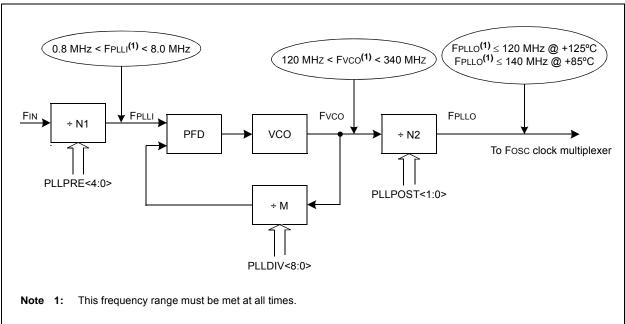
REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$

M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

DS70000657H-page 154

© 2011-2013 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	—	_	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_	<u> </u>	—	_		_	FRMDLY	SPIBEN		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit						
		SPIx support is e SPIx support is d		x pin is used as	Frame Sync	oulse input/outpu	it)		
bit 14	SPIFSD: Fra	me Sync Pulse [Direction Co	ontrol bit					
		ync pulse input (ync pulse output							
bit 13	FRMPOL: Fr	ame Sync Pulse	Polarity bit	t					
		ync pulse is activ	•						
		ync pulse is activ							
bit 12-2	-	nted: Read as '0							
bit 1		ame Sync Pulse	-						
	 1 = Frame Sync pulse coincides with first bit clock 0 = Frame Sync pulse precedes first bit clock 								
bit 0	SPIBEN: En	hanced Buffer Er	nable bit						
		d buffer is enable							
	0 = Enhance	d buffer is disabl	ed (Standa	rd mode)					

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	F7BF	°<3:0>		F6BP<3:0>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	F5BF	°<3:0>			F4BF	P<3:0>					
bit 7							bit 0				
Legend:											
R = Readable bi	t	W = Writable	bit	U = Unimplemer	nted bit, read	d as '0'					
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkr	nown				

	1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	F11BF	P<3:0>		F10BP<3:0>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	F9BP	2<3:0>			F8B	P<3:0>					
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-12	1111 = Filter 1110 = Filter • • • •	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	iffer 4							
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 1	0 bits (same val	ues as bits<1	5:12>)					
bit 7-4	F9BP<3:0>:	RX Buffer Mas	k for Filter 9 b	oits (same value	s as bits<15:1	2>)					
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)					

© 2011-2013 Microchip Technology Inc.

REGISTER 24-6:	PTGSDLIM: PTG STEP DELAY LIMIT REGISTER ^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGSDLIM<15:8>										
bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PTGSE)LIM<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

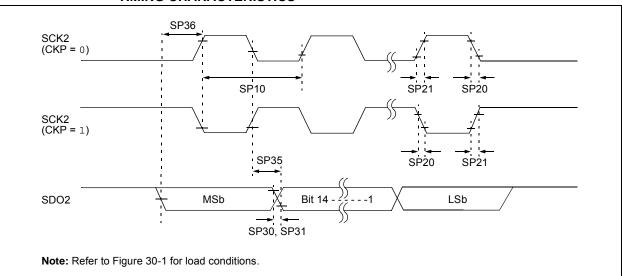
2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplemented bit, read as '0'			
-n = Value at P	POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown		

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

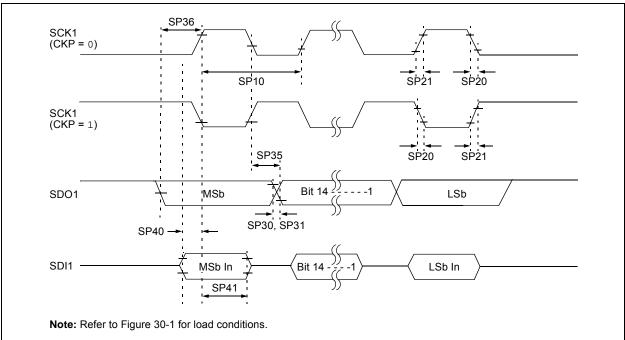

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER	25-3: CM40	CON: COMPA	RATOR 4 CO	ONTROL RE	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	—	—	—	CEVT	COUT
bit 15							bit 8
R/W-0	DAM 0	U-0	DAM 0	U-0	U-0		R/W-0
	R/W-0	0-0	R/W-0	0-0	0-0	R/W-0	
EVPOL1	EVPOL0	—	CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	iown
				0 200000			
bit 15	CON: Comp	arator Enable b	oit				
		ator is enabled					
		ator is disabled					
bit 14	COE: Comp	arator Output E	nable bit				
		ator output is pr ator output is in		xOUT pin			
bit 13	CPOL: Com	parator Output	Polarity Select	bit			
	1 = Compara	ator output is in	verted				
	0 = Compara	ator output is no	ot inverted				
bit 12-10	Unimpleme	nted: Read as	'0'				
bit 9	CEVT: Comp	parator Event b	it				
	interrup	ts until the bit is	cleared	POL<1:0> set	tings occurred;	disables future	triggers and
	•	ator event did r					
bit 8		parator Output					
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$	<u>. = 0 (non-inver</u>	ted polarity):				
	0 = VIN + < V						
		. = 1 (inverted p	olarity):				
	1 = VIN+ < V		<u> </u>				
	0 = VIN+ > V	'IN-					
bit 7-6	EVPOL<1:0	>: Trigger/Ever	t/Interrupt Pola	arity Select bit	S		
	10 = Trigger		generated only			or output (while (e polarity selecte	
	If CPO	L = <u>1</u> (inverted) -high transition	polarity):	ator output.			
		L = 0 (non-inve		ator output.			
		/event/interrupt (while CEVT =		v on low-to-higl	n transition of th	e polarity selecte	ed comparato
		L = 1 (inverted -low transition		ator output.			
		L = 0 (non-inve -high transition		ator output.			
	00 = Trigger	/event/interrupt	generation is	disabled			
Note 1: In	puts that are se	lected and not a	available will be	e tied to Vss. S	See the "Pin Dia	agrams" sectior	n for available

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS


АС СНА	RACTERIST	īcs	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_	_	15	MHz	(Note 3)	
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	-	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

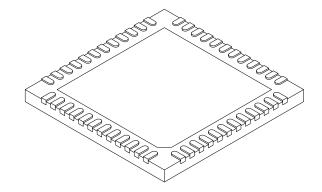
2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	^{n.} Symbol Charact		eristic ⁽³⁾	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS		
			400 kHz mode	1.3	—	μS		
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100	_	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	—	μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS		
		Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	_	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μS		
		Hold Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.25		μS		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
	Fro	From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μs	can start	
IS50	Св	Bus Capacitive Lo	ading	_	400	pF		
IS51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)	

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

NOTES:

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Dimension Limits			MAX		
Number of Pins	N		48			
Pitch	е		0.40 BSC			
Overall Height	Α	0.45	0.45 0.50 0.55			
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.45 4.60 4.75				
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75		
Contact Width	b	0.15 0.20 0.25				
Contact Length	L	0.30 0.40 0.50				
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2