



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                             |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                    |
| Number of I/O              | 35                                                                               |
| Program Memory Size        | 128KB (43K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 8K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 9x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 44-VFTLA Exposed Pad                                                             |
| Supplier Device Package    | 44-VTLA (6x6)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc204-i-tl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 3.7 CPU Control Registers

| R/W-0               | ) R/W-0                                                     | R/W-0                                | R/W-0                                       | R/C-0                    | R/C-0              | R-0               | R/W-0           |  |  |  |
|---------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------|--------------------|-------------------|-----------------|--|--|--|
| 0A <sup>(1)</sup>   | OB <sup>(1)</sup>                                           | SA <sup>(1,4)</sup>                  | SB <sup>(1,4)</sup>                         | OAB <sup>(1)</sup>       | SAB <sup>(1)</sup> | DA <sup>(1)</sup> | DC              |  |  |  |
| bit 15              |                                                             |                                      |                                             |                          |                    |                   | bit 8           |  |  |  |
|                     |                                                             |                                      |                                             |                          |                    |                   |                 |  |  |  |
| R/W-0 <sup>(2</sup> | R/W-0 <sup>(2,3)</sup>                                      | R/W-0 <sup>(2,3)</sup>               | R-0                                         | R/W-0                    | R/W-0              | R/W-0             | R/W-0           |  |  |  |
| IPL2                | IPL1                                                        | IPL0                                 | RA                                          | N                        | OV                 | Z                 | С               |  |  |  |
| bit 7               |                                                             |                                      |                                             |                          |                    |                   | bit 0           |  |  |  |
|                     |                                                             |                                      |                                             |                          |                    |                   |                 |  |  |  |
| Legend:             |                                                             | C = Clearable                        | bit                                         |                          |                    |                   |                 |  |  |  |
| R = Reada           | able bit                                                    | W = Writable                         | able bit U = Unimplemented bit, read as '0' |                          |                    |                   |                 |  |  |  |
| -n = Value          | e at POR                                                    | '1'= Bit is set                      |                                             | '0' = Bit is cle         | ared               | x = Bit is unkr   | nown            |  |  |  |
|                     |                                                             |                                      |                                             |                          |                    |                   |                 |  |  |  |
| bit 15              | OA: Accumu                                                  | lator A Overflow                     | v Status bit <sup>(1)</sup>                 |                          |                    |                   |                 |  |  |  |
|                     | 1 = Accumula                                                | ator A has over                      | flowed                                      |                          |                    |                   |                 |  |  |  |
|                     | 0 = Accumula                                                | ator A has not c                     | verflowed                                   |                          |                    |                   |                 |  |  |  |
| bit 14              | <b>OB:</b> Accumulator B Overflow Status bit <sup>(1)</sup> |                                      |                                             |                          |                    |                   |                 |  |  |  |
|                     | 1 = Accumulator B has overflowed                            |                                      |                                             |                          |                    |                   |                 |  |  |  |
| hit 13              |                                                             | 0 = Accumulator B flas not overnowed |                                             |                          |                    |                   |                 |  |  |  |
| DIL 15              | $1 = \Delta c cumula$                                       | ator A is saturat                    | ed or has her                               | n saturated at           | some time          |                   |                 |  |  |  |
|                     | 0 = Accumula                                                | ator A is not sat                    | urated                                      |                          | Some time          |                   |                 |  |  |  |
| bit 12              | SB: Accumu                                                  | lator B Saturatio                    | on 'Sticky' Sta                             | tus bit <sup>(1,4)</sup> |                    |                   |                 |  |  |  |
|                     | 1 = Accumula                                                | ator B is satura                     | ed or has bee                               | en saturated at          | some time          |                   |                 |  |  |  |
|                     | 0 = Accumula                                                | ator B is not sat                    | urated                                      |                          |                    |                   |                 |  |  |  |
| bit 11              | <b>OAB:</b> OA    (                                         | OB Combined A                        | ccumulator O                                | verflow Status           | bit <sup>(1)</sup> |                   |                 |  |  |  |
|                     | 1 = Accumula                                                | ators A or B have                    | ve overflowed                               |                          |                    |                   |                 |  |  |  |
|                     | 0 = Neither A                                               | Accumulators A                       | or B have ove                               | erflowed                 | (1)                |                   |                 |  |  |  |
| bit 10              | SAB: SA    S                                                | B Combined A                         | cumulator 'Si                               | icky Status bit          |                    | <b>1</b>          |                 |  |  |  |
|                     | 1 = Accumula  0 = Neither A                                 | ators A or B are                     | or B are satur                              | nave been sat            | urated at some     | time              |                 |  |  |  |
| hit 9               |                                                             | Active hit(1)                        |                                             | alou                     |                    |                   |                 |  |  |  |
| bit 0               | 1 = DO loop is                                              | s in progress                        |                                             |                          |                    |                   |                 |  |  |  |
|                     | 0 = DO loop is                                              | s not in progres                     | S                                           |                          |                    |                   |                 |  |  |  |
| bit 8               | DC: MCU AL                                                  | U Half Carry/Bo                      | orrow bit                                   |                          |                    |                   |                 |  |  |  |
|                     | 1 = A carry-o                                               | out from the 4th                     | low-order bit (                             | for byte-sized o         | data) or 8th low-  | order bit (for wo | ord-sized data) |  |  |  |
|                     | of the re                                                   | sult occurred                        |                                             |                          |                    |                   |                 |  |  |  |
|                     | 0 = No carry                                                | -out from the 4                      | th low-order t                              | bit (for byte-siz        | ed data) or 8th    | low-order bit (1  | for word-sized  |  |  |  |
|                     | uala) U                                                     |                                      |                                             |                          |                    |                   |                 |  |  |  |
| Note 1:             | This bit is availabl                                        | e on dsPIC33E                        | PXXXMC20X                                   | /50X and dsPl            | C33EPXXXGP         | 50X devices on    | ly.             |  |  |  |
| 2:                  | The IPL<2:0> bits                                           | are concatenat                       | ed with the IF                              | PL<3> bit (COR           | RCON<3>) to fo     | rm the CPU Inte   | errupt Priority |  |  |  |
|                     | Level. The value I<br>IPL< $3 > = 1$ .                      | n parentheses i                      | naicates the I                              | PL, IT IPL<3> =          | = ⊥. User interru  | ipts are disable  | a wnen          |  |  |  |

#### REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

## REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

| bit 2 | SFA: Stack Frame Active Status bit                                                        |
|-------|-------------------------------------------------------------------------------------------|
|       | 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and |
|       | DSWPAG values                                                                             |
|       | 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space              |
| hit 1 | PND: Dounding Mode Select hit(1)                                                          |

- bit 1 **RND:** Rounding Mode Select bit<sup>(1)</sup>
  - 1 = Biased (conventional) rounding is enabled
  - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit<sup>(1)</sup> 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
  - **2:** This bit is always read as '0'.
  - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.



# FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

## TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

| File<br>Name | Addr. | Bit 15  | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9                 | Bit 8                     | Bit 7 | Bit 6 | Bit 5     | Bit 4       | Bit 3        | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------|---------|--------|---------|--------|--------|--------|-----------------------|---------------------------|-------|-------|-----------|-------------|--------------|-------|-------|-------|---------------|
| I2C1RCV      | 0200  | —       | —      | —       | _      | —      | _      | _                     | – – I2C1 Receive Register |       |       |           |             |              |       |       | 0000  |               |
| I2C1TRN      | 0202  | _       | _      | _       | _      | _      | _      | _                     | I2C1 Transmit Register    |       |       |           |             |              |       |       | 00FF  |               |
| I2C1BRG      | 0204  | _       | _      | _       | _      | _      | _      | _                     | Baud Rate Generator       |       |       |           |             |              |       |       | 0000  |               |
| I2C1CON      | 0206  | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW                | SMEN                      | GCEN  | STREN | ACKDT     | ACKEN       | RCEN         | PEN   | RSEN  | SEN   | 1000          |
| I2C1STAT     | 0208  | ACKSTAT | TRSTAT | _       | _      | _      | BCL    | GCSTAT                | ADD10                     | IWCOL | I2COV | D_A       | Р           | S            | R_W   | RBF   | TBF   | 0000          |
| I2C1ADD      | 020A  | —       | _      | —       | _      | —      |        | I2C1 Address Register |                           |       |       |           |             |              |       | 0000  |       |               |
| I2C1MSK      | 020C  | —       | _      | —       | _      | —      |        |                       |                           |       |       | I2C1 Ad   | dress Mask  |              |       |       |       | 0000          |
| I2C2RCV      | 0210  | _       | _      | _       | _      | _      | _      | _                     | _                         |       |       |           | I2C2 Recei  | ve Register  |       |       |       | 0000          |
| I2C2TRN      | 0212  | _       | _      |         | —      | —      |        | _                     | —                         |       |       |           | I2C2 Trans  | mit Register |       |       |       | 00FF          |
| I2C2BRG      | 0214  | —       | _      | —       | _      | —      |        | —                     |                           |       |       | Bau       | d Rate Gen  | erator       |       |       |       | 0000          |
| I2C2CON      | 0216  | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW                | SMEN                      | GCEN  | STREN | ACKDT     | ACKEN       | RCEN         | PEN   | RSEN  | SEN   | 1000          |
| I2C2STAT     | 0218  | ACKSTAT | TRSTAT |         | —      | —      | BCL    | GCSTAT                | ADD10                     | IWCOL | I2COV | D_A       | Р           | S            | R_W   | RBF   | TBF   | 0000          |
| I2C2ADD      | 021A  | _       |        | _       | _      | _      | _      |                       |                           |       |       | I2C2 Addr | ess Registe | r            |       |       |       | 0000          |
| I2C2MSK      | 021C  | _       |        | _       | _      | _      | _      |                       |                           |       |       | I2C2 Ad   | dress Mask  |              |       |       |       | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-18: UART1 AND UART2 REGISTER MAP

| SFR<br>Name | Addr.                             | Bit 15   | Bit 14 | Bit 13   | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8                                       | Bit 7      | Bit 6    | Bit 5 | Bit 4        | Bit 3    | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-----------------------------------|----------|--------|----------|--------|--------|--------|-------|---------------------------------------------|------------|----------|-------|--------------|----------|-------|--------|-------|---------------|
| U1MODE      | 0220                              | UARTEN   | —      | USIDL    | IREN   | RTSMD  | —      | UEN<  | <1:0>                                       | WAKE       | LPBACK   | ABAUD | URXINV       | BRGH     | PDSE  | L<1:0> | STSEL | 0000          |
| U1STA       | 0222                              | UTXISEL1 | UTXINV | UTXISEL0 | _      | UTXBRK | UTXEN  | UTXBF | TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OER |            |          |       | OERR         | URXDA    | 0110  |        |       |               |
| U1TXREG     | 0224                              | _        | _      | —        | _      | _      | _      | _     | - UART1 Transmit Register xx                |            |          |       |              |          |       |        | xxxx  |               |
| U1RXREG     | 0226                              | _        | _      | —        | _      | _      | _      | _     | UART1 Receive Register                      |            |          |       |              |          |       | 0000   |       |               |
| U1BRG       | 0228                              |          |        |          |        |        |        | Baud  | Rate Gen                                    | erator Pre | scaler   |       |              |          |       |        |       | 0000          |
| U2MODE      | 0230                              | UARTEN   | _      | USIDL    | IREN   | RTSMD  | _      | UEN<  | <1:0>                                       | WAKE       | LPBACK   | ABAUD | URXINV       | BRGH     | PDSE  | L<1:0> | STSEL | 0000          |
| U2STA       | 0232                              | UTXISEL1 | UTXINV | UTXISEL0 | _      | UTXBRK | UTXEN  | UTXBF | TRMT                                        | URXI       | SEL<1:0> | ADDEN | RIDLE        | PERR     | FERR  | OERR   | URXDA | 0110          |
| U2TXREG     | 0234                              | _        | _      | —        | _      | _      | _      | _     |                                             |            |          | UART  | 2 Transmit F | Register |       |        |       | xxxx          |
| U2RXREG     | 0236                              | _        | _      | —        | _      | _      | _      | _     |                                             |            |          | UART  | 2 Receive F  | Register |       |        |       | 0000          |
| U2BRG       | Baud Rate Generator Prescaler 000 |          |        |          |        |        |        |       |                                             | 0000       |          |       |              |          |       |        |       |               |
|             |                                   |          | - ·    |          |        |        |        |       |                                             |            |          |       |              |          |       |        |       |               |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.



#### EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

# 4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

## FIGURE 4-18: ARBITER ARCHITECTURE

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

| TABLE 4-62: | DATA MEMORY BUS  |
|-------------|------------------|
|             | ARBITER PRIORITY |

| Briority     | MSTRPR<15:0> Bit Setting <sup>(1)</sup> |          |  |  |  |  |  |
|--------------|-----------------------------------------|----------|--|--|--|--|--|
| Phoney       | 0x0000                                  | 0x0020   |  |  |  |  |  |
| M0 (highest) | CPU                                     | DMA      |  |  |  |  |  |
| M1           | Reserved                                | CPU      |  |  |  |  |  |
| M2           | Reserved                                | Reserved |  |  |  |  |  |
| M3           | DMA                                     | Reserved |  |  |  |  |  |
| M4 (lowest)  | ICD                                     | ICD      |  |  |  |  |  |

**Note 1:** All other values of MSTRPR<15:0> are reserved.



| Internut Course                               | Vector                             | IRQ        |                   | Interrupt Bit Location |          |             |  |
|-----------------------------------------------|------------------------------------|------------|-------------------|------------------------|----------|-------------|--|
| Interrupt Source                              | #                                  | #          | IVI Address       | Flag                   | Enable   | Priority    |  |
|                                               | Highe                              | est Natura | al Order Priority |                        |          |             |  |
| INT0 – External Interrupt 0                   | 8                                  | 0          | 0x000014          | IFS0<0>                | IEC0<0>  | IPC0<2:0>   |  |
| IC1 – Input Capture 1                         | 9                                  | 1          | 0x000016          | IFS0<1>                | IEC0<1>  | IPC0<6:4>   |  |
| OC1 – Output Compare 1                        | 10                                 | 2          | 0x000018          | IFS0<2>                | IEC0<2>  | IPC0<10:8>  |  |
| T1 – Timer1                                   | 11                                 | 3          | 0x00001A          | IFS0<3>                | IEC0<3>  | IPC0<14:12> |  |
| DMA0 – DMA Channel 0                          | 12                                 | 4          | 0x00001C          | IFS0<4>                | IEC0<4>  | IPC1<2:0>   |  |
| IC2 – Input Capture 2                         | 13                                 | 5          | 0x00001E          | IFS0<5>                | IEC0<5>  | IPC1<6:4>   |  |
| OC2 – Output Compare 2                        | 14                                 | 6          | 0x000020          | IFS0<6>                | IEC0<6>  | IPC1<10:8>  |  |
| T2 – Timer2                                   | 15                                 | 7          | 0x000022          | IFS0<7>                | IEC0<7>  | IPC1<14:12> |  |
| T3 – Timer3                                   | 16                                 | 8          | 0x000024          | IFS0<8>                | IEC0<8>  | IPC2<2:0>   |  |
| SPI1E – SPI1 Error                            | 17                                 | 9          | 0x000026          | IFS0<9>                | IEC0<9>  | IPC2<6:4>   |  |
| SPI1 – SPI1 Transfer Done                     | 18                                 | 10         | 0x000028          | IFS0<10>               | IEC0<10> | IPC2<10:8>  |  |
| U1RX – UART1 Receiver                         | 19                                 | 11         | 0x00002A          | IFS0<11>               | IEC0<11> | IPC2<14:12> |  |
| U1TX – UART1 Transmitter                      | 20                                 | 12         | 0x00002C          | IFS0<12>               | IEC0<12> | IPC3<2:0>   |  |
| AD1 – ADC1 Convert Done                       | 21                                 | 13         | 0x00002E          | IFS0<13>               | IEC0<13> | IPC3<6:4>   |  |
| DMA1 – DMA Channel 1                          | 22                                 | 14         | 0x000030          | IFS0<14>               | IEC0<14> | IPC3<10:8>  |  |
| Reserved                                      | 23                                 | 15         | 0x000032          | _                      | _        | _           |  |
| SI2C1 – I2C1 Slave Event                      | 24                                 | 16         | 0x000034          | IFS1<0>                | IEC1<0>  | IPC4<2:0>   |  |
| MI2C1 – I2C1 Master Event                     | 25                                 | 17         | 0x000036          | IFS1<1>                | IEC1<1>  | IPC4<6:4>   |  |
| CM – Comparator Combined Event                | 26                                 | 18         | 0x000038          | IFS1<2>                | IEC1<2>  | IPC4<10:8>  |  |
| CN – Input Change Interrupt                   | 27                                 | 19         | 0x00003A          | IFS1<3>                | IEC1<3>  | IPC4<14:12> |  |
| INT1 – External Interrupt 1                   | 28                                 | 20         | 0x00003C          | IFS1<4>                | IEC1<4>  | IPC5<2:0>   |  |
| Reserved                                      | 29-31                              | 21-23      | 0x00003E-0x000042 | _                      | _        | _           |  |
| DMA2 – DMA Channel 2                          | 32                                 | 24         | 0x000044          | IFS1<8>                | IEC1<8>  | IPC6<2:0>   |  |
| OC3 – Output Compare 3                        | 33                                 | 25         | 0x000046          | IFS1<9>                | IEC1<9>  | IPC6<6:4>   |  |
| OC4 – Output Compare 4                        | 34                                 | 26         | 0x000048          | IFS1<10>               | IEC1<10> | IPC6<10:8>  |  |
| T4 – Timer4                                   | 35                                 | 27         | 0x00004A          | IFS1<11>               | IEC1<11> | IPC6<14:12> |  |
| T5 – Timer5                                   | 36                                 | 28         | 0x00004C          | IFS1<12>               | IEC1<12> | IPC7<2:0>   |  |
| INT2 – External Interrupt 2                   | 37                                 | 29         | 0x00004E          | IFS1<13>               | IEC1<13> | IPC7<6:4>   |  |
| U2RX – UART2 Receiver                         | 38                                 | 30         | 0x000050          | IFS1<14>               | IEC1<14> | IPC7<10:8>  |  |
| U2TX – UART2 Transmitter                      | 39                                 | 31         | 0x000052          | IFS1<15>               | IEC1<15> | IPC7<14:12> |  |
| SPI2E – SPI2 Error                            | 40                                 | 32         | 0x000054          | IFS2<0>                | IEC2<0>  | IPC8<2:0>   |  |
| SPI2 – SPI2 Transfer Done                     | 41                                 | 33         | 0x000056          | IFS2<1>                | IEC2<1>  | IPC8<6:4>   |  |
| C1RX – CAN1 RX Data Ready <sup>(1)</sup>      | 42                                 | 34         | 0x000058          | IFS2<2>                | IEC2<2>  | IPC8<10:8>  |  |
| C1 – CAN1 Event <sup>(1)</sup>                | 43                                 | 35         | 0x00005A          | IFS2<3>                | IEC2<3>  | IPC8<14:12> |  |
| DMA3 – DMA Channel 3                          | 44                                 | 36         | 0x00005C          | IFS2<4>                | IEC2<4>  | IPC9<2:0>   |  |
| IC3 – Input Capture 3                         | 3 – Input Capture 3 45 37 0x00005E |            | 0x00005E          | IFS2<5>                | IEC2<5>  | IPC9<6:4>   |  |
| IC4 – Input Capture 4                         | 46                                 | 38         | 0x000060          | IFS2<6>                | IEC2<6>  | IPC9<10:8>  |  |
| Reserved                                      | 47-56                              | 39-48      | 0x000062-0x000074 | —                      | —        | _           |  |
| SI2C2 – I2C2 Slave Event                      | 57                                 | 49         | 0x000076          | IFS3<1>                | IEC3<1>  | IPC12<6:4>  |  |
| MI2C2 – I2C2 Master Event                     | 58                                 | 50         | 0x000078          | IFS3<2>                | IEC3<2>  | IPC12<10:8> |  |
| Reserved                                      | 59-64                              | 51-56      | 0x00007A-0x000084 |                        |          |             |  |
| PSEM – PWM Special Event Match <sup>(2)</sup> | 65                                 | 57         | 0x000086          | IFS3<9>                | IEC3<9>  | IPC14<6:4>  |  |

#### TABLE 7-1: INTERRUPT VECTOR DETAILS

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

| R/W-0                                   | R/W-0                                                           | R/W-0            | R/W-0               | R/W-0                     | U-0               | U-0             | U-0     |  |  |
|-----------------------------------------|-----------------------------------------------------------------|------------------|---------------------|---------------------------|-------------------|-----------------|---------|--|--|
| CHEN                                    | SIZE                                                            | DIR              | HALF                | NULLW                     | _                 | —               | —       |  |  |
| bit 15                                  |                                                                 |                  |                     |                           |                   |                 | bit 8   |  |  |
|                                         |                                                                 |                  |                     |                           |                   |                 |         |  |  |
| U-0                                     | U-0                                                             | R/W-0            | R/W-0               | U-0                       | U-0               | R/W-0           | R/W-0   |  |  |
|                                         |                                                                 | AMODE1           | AMODE0              |                           |                   | MODE1           | MODE0   |  |  |
| bit 7                                   |                                                                 |                  |                     |                           |                   |                 | bit 0   |  |  |
|                                         |                                                                 |                  |                     |                           |                   |                 |         |  |  |
| Legend:                                 |                                                                 |                  | ,                   |                           |                   | (0)             |         |  |  |
| R = Readable                            | bit                                                             | W = Writable     | bit                 |                           | mented bit, read  | as '0'          |         |  |  |
| -n = Value at F                         | POR                                                             | '1' = Bit is set |                     | $0^{\prime}$ = Bit is cle | eared             | x = Bit is unkn | IOWN    |  |  |
| bit 15                                  |                                                                 | Channel Enabl    | o hit               |                           |                   |                 |         |  |  |
| bit 15                                  | 1 = Channel                                                     | is enabled       |                     |                           |                   |                 |         |  |  |
|                                         | 0 = Channel is disabled                                         |                  |                     |                           |                   |                 |         |  |  |
| bit 14 SIZE: DMA Data Transfer Size bit |                                                                 |                  |                     |                           |                   |                 |         |  |  |
|                                         | 1 = Byte                                                        |                  |                     |                           |                   |                 |         |  |  |
|                                         | 0 = Word                                                        |                  |                     |                           |                   |                 |         |  |  |
| bit 13                                  | DIR: DMA Transfer Direction bit (source/destination bus select) |                  |                     |                           |                   |                 |         |  |  |
|                                         | 1 = Reads from  0 = Reads from  1                               | om RAM addre     | ddress. writes to p | s to RAM addr             | ess<br>ess        |                 |         |  |  |
| bit 12                                  | HALF: DMA                                                       | Block Transfer   | Interrupt Sele      | ct bit                    |                   |                 |         |  |  |
|                                         | 1 = Initiates i                                                 | nterrupt when I  | nalf of the dat     | a has been mo             | oved              |                 |         |  |  |
|                                         | 0 = Initiates i                                                 | nterrupt when a  | all of the data     | has been mov              | ved               |                 |         |  |  |
| bit 11                                  | NULLW: Null                                                     | Data Periphera   | al Write Mode       | Select bit                |                   |                 |         |  |  |
|                                         | 1 = Null data                                                   | write to periph  | eral in additio     | n to RAM write            | e (DIR bit must a | also be clear)  |         |  |  |
| bit 10-6                                | Unimplemen                                                      | ted: Read as '   | ר'                  |                           |                   |                 |         |  |  |
| bit 5-4                                 | AMODE<1:0                                                       | : DMA Channe     | el Addressina       | Mode Select               | bits              |                 |         |  |  |
|                                         | 11 = Reserve                                                    | ed               |                     |                           |                   |                 |         |  |  |
|                                         | 10 = Peripher                                                   | ral Indirect Add | ressing mode        |                           |                   |                 |         |  |  |
|                                         | 01 = Register                                                   | Indirect withou  | ut Post-Increm      | nent mode                 |                   |                 |         |  |  |
| hit 3 2                                 |                                                                 | tod: Pood as '   | ost-incremen        | tmode                     |                   |                 |         |  |  |
| bit $1_0$                               |                                                                 | DMA Channel      | Operating Mc        | nda Salact hits           |                   |                 |         |  |  |
| bit 1-0                                 | 11 = One-Sh                                                     | ot. Pina-Pona r  | nodes are en        | abled (one blo            | ck transfer from  | /to each DMA b  | ouffer) |  |  |
|                                         | 10 = Continue                                                   | ous, Ping-Pong   | modes are e         | nabled                    |                   |                 |         |  |  |
|                                         | 01 = One-Sho                                                    | ot, Ping-Pong r  | nodes are dis       | abled                     |                   |                 |         |  |  |
|                                         | 00 = Continue                                                   | ous, Ping-Pong   | modes are d         | ISADIEO                   |                   |                 |         |  |  |

### REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

#### 11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

#### FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn



#### 11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

#### TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

| Function                | RPxR<5:0> | Output Name                                   |
|-------------------------|-----------|-----------------------------------------------|
| Default PORT            | 000000    | RPn tied to Default Pin                       |
| U1TX                    | 000001    | RPn tied to UART1 Transmit                    |
| U2TX                    | 000011    | RPn tied to UART2 Transmit                    |
| SDO2                    | 001000    | RPn tied to SPI2 Data Output                  |
| SCK2                    | 001001    | RPn tied to SPI2 Clock Output                 |
| SS2                     | 001010    | RPn tied to SPI2 Slave Select                 |
| C1TX <sup>(2)</sup>     | 001110    | RPn tied to CAN1 Transmit                     |
| OC1                     | 010000    | RPn tied to Output Compare 1 Output           |
| OC2                     | 010001    | RPn tied to Output Compare 2 Output           |
| OC3                     | 010010    | RPn tied to Output Compare 3 Output           |
| OC4                     | 010011    | RPn tied to Output Compare 4 Output           |
| C1OUT                   | 011000    | RPn tied to Comparator Output 1               |
| C2OUT                   | 011001    | RPn tied to Comparator Output 2               |
| C3OUT                   | 011010    | RPn tied to Comparator Output 3               |
| SYNCO1 <sup>(1)</sup>   | 101101    | RPn tied to PWM Primary Time Base Sync Output |
| QEI1CCMP <sup>(1)</sup> | 101111    | RPn tied to QEI 1 Counter Comparator Output   |
| REFCLKO                 | 110001    | RPn tied to Reference Clock Output            |
| C4OUT                   | 110010    | RPn tied to Comparator Output 4               |

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

NOTES:



#### FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

NOTES:

# 24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

#### REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)<sup>(1)</sup>
  - 1 = VIN+ input connects to internal CVREFIN voltage
  - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits<sup>(1)</sup>
  - 11 = VIN- input of comparator connects to OA3/AN6
    - 10 = VIN- input of comparator connects to OA2/AN0
  - 01 = VIN- input of comparator connects to OA1/AN3
  - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

### 29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

#### 29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
  assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

### 29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

## 29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

## 29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

## 29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

## 29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

# 29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

## 29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

## FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS



#### TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                               | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                             |      |       |                    |  |
|--------------------|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|-------|--------------------|--|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup> | Min.                                                                                                                                                                                                                                                                                   | Тур.                        | Max. | Units | Conditions         |  |
| OC10               | TccF   | OCx Output Fall Time          | —                                                                                                                                                                                                                                                                                      |                             |      | ns    | See Parameter DO32 |  |
| OC11               | TccR   | OCx Output Rise Time          | —                                                                                                                                                                                                                                                                                      | — — — ns See Parameter DO31 |      |       |                    |  |

Note 1: These parameters are characterized but not tested in manufacturing.

#### FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS



#### TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                   | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |          |       |            |
|--------------------|--------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-------|------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>     | Min.                                                                                                                                                                                                                                                                                    | Тур. | Max.     | Units | Conditions |
| OC15               | Tfd    | Fault Input to PWMx I/O<br>Change | —                                                                                                                                                                                                                                                                                       | _    | Tcy + 20 | ns    |            |
| OC20               | TFLT   | Fault Input Pulse Width           | Tcy + 20                                                                                                                                                                                                                                                                                | _    | —        | ns    |            |

**Note 1:** These parameters are characterized but not tested in manufacturing.



#### FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES:



1:128

70