

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc204t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

		<u>~</u>				Re	mappa	ble P	eriphe	erals											
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbyte	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	СТМИ	PTG	l/O Pins	Pins	Packages
PIC24EP32MC202	512	32	4																		
PIC24EP64MC202	1024	64	8																		SPDIP,
PIC24EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC,
PIC24EP256MC202	1024	256	32																		QFN-S
PIC24EP512MC202	1024	512	48																		
PIC24EP32MC203	512	32	4	-			_	4	0	0		0	0	4	•	2/4	V	Vee	05	20	
PIC24EP64MC203	1024	64	8	5	4	4	ю	1	2	2	_	3	2	1	8	3/4	res	res	25	30	VILA
PIC24EP32MC204	512	32	4																		
PIC24EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
PIC24EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,
PIC24EP256MC204	1024	256	32																	40	UQFN
PIC24EP512MC204	1024	512	48																		
PIC24EP64MC206	1024	64	8																		
PIC24EP128MC206	1024	128	16	_					-			•									TQFP.
PIC24EP256MC206	1024	256	32	5	4	4	6	1	2	2	_	3	2	1	16	3/4 fe	res	res	53	64	QFN
PIC24EP512MC206	1024	512	48																		
dsPIC33EP32MC202	512	32	4																		
dsPIC33EP64MC202	1024	64	8																		SPDIP,
dsPIC33EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,
dsPIC33EP256MC202	1024	256	32																		QFN-S
dsPIC33EP512MC202	1024	512	48																		GINO
dsPIC33EP32MC203	512	32	4	_		_			-	_		-	-		-						
dsPIC33EP64MC203	1024	64	8	5	4	4	6	1	2	2	—	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP32MC204	512	32	4																		
dsPIC33EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
dsPIC33EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,
dsPIC33EP256MC204	1024	256	32																	40	UQFN,
dsPIC33EP512MC204	1024	512	48																		
dsPIC33EP64MC206	1024	64	8																		
dsPIC33EP128MC206	1024	128	16	_					-			-	-								TOFP
dsPIC33EP256MC206	1024	256	32	5	4	4	6	1	2	2	—	3	2	1	16	3/4	Yes	Yes	53	64	QFN
dsPIC33EP512MC206	1024	512	48																		
dsPIC33EP32MC502	512	32	4																		
dsPIC33EP64MC502	1024	64	8																		SPDIP,
dsPIC33EP128MC502	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,
dsPIC33EP256MC502	1024	256	32													0 2/307					' SSOP ⁽⁵⁾ , QFN-S
dsPIC33EP512MC502	1024	512	48																	QFN-S	_
dsPIC33EP32MC503	512	32	4	_			6		_	-		-	-		_			~	a-		
dsPIC33EP64MC503	1024	64	8	5	4	4	6	1	2	2	1	3	2	1	8	3/4	res	res	25	36	VILA

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

Pin Diagrams (Continued)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0					
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC					
bit 15							bit 8					
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
IPL2	IPL1	IPL0	RA	N	OV	Z	С					
bit 7							bit 0					
Legend:		C = Clearable	bit									
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾									
	1 = Accumula	ator A has over	flowed									
	0 = Accumula	ator A has not c	verflowed									
bit 14	OB: Accumu	lator B Overflov	v Status bit ⁽¹⁾									
	1 = Accumula	ator B has over	flowed									
hit 13		0 - Accumulator & Staturation (Sticky' Status hit(1.4)										
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time							
	0 = Accumula	ator A is not sat	urated		Some time							
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)								
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time							
	0 = Accumula	ator B is not sat	urated									
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾							
	1 = Accumula	ators A or B have	ve overflowed									
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)							
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1						
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time						
hit 9		Active hit(1)		alou								
bit 0	1 = DO loop is	s in progress										
	0 = DO loop is	s not in progres	S									
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit									
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)					
	of the re	sult occurred										
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized					
	uala) U											
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.					
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority					
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen					

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES

NOTES:

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC1R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	IC2R<6:0>: A (see Table 11	Assign Input Ca -2 for input pin	pture 2 (IC2) selection nur	to the Correspondent	onding RPn P	in bits	
	1111001 = I r	nput tied to RPI	121				
	•						
	0000001 = lr	nput tied to CM	P1				
	nl = 0000000	nput tied to Vss	;				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	IC1R<6:0>: A (see Table 11	Assign Input Ca -2 for input pin	pture 1 (IC1) selection nur	to the Correspondence	onding RPn P	in bits	
	1111001 = I r	nput tied to RPI	121				
	•						
	•						
	0000001 = lr	nput tied to CM	P1				
	0000000 = Ir	nput tied to Vss	;				

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	DTCMP3R< (see Table 1 1111001 =	6:0>: Assign PW 1-2 for input pin nput tied to RPI	/M Dead-Tim selection nun 121	e Compensatio nbers)	n Input 3 to th	ne Corresponding	g RPn Pin bits
	0000001 = 0000000 =	nput tied to CMI nput tied to Vss	P1				
bit 7	0000001 = 0000000 = Unimpleme	nput tied to CMI nput tied to Vss nted: Read as '0	21)'				

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹⁾	—	TSIDL	—	_	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	TON: Timer1	On bit ⁽¹⁾								
	1 = Starts 16-	bit Limer1 bit Timer1								
bit 1/	Unimplement	ted: Pead as '	ı'							
bit 13		1 Stop in Idle N	/ode hit							
DIC 15	1 = Discontinu	i stop in lae k	eration when a	device enters l	dle mode					
	0 = Continues	module opera	tion in Idle mo	ode						
bit 12-7	Unimplement	ted: Read as ')'							
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit						
	When TCS =	<u>1:</u> prod								
	When TCS =	0. 0.								
	1 = Gated tim	<u>e</u> accumulatior	n is enabled							
	0 = Gated tim	e accumulatior	n is disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits						
	11 = 1:256									
	10 = 1:64 01 = 1:8									
	01 = 1.0 00 = 1.1									
bit 3	Unimplement	ted: Read as ')'							
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	chronization Se	elect bit ⁽¹⁾					
	When TCS =	1:								
	1 = Synchroni	izes external cl	ock input							
	0 = Does not	synchronize ex	ternal clock in	nput						
	This bit is jand	<u>ored</u> .								
bit 1	TCS: Timer1 (Clock Source S	Select bit ⁽¹⁾							
	1 = External c	lock is from pir	n, T1CK (on th	ne rising edge)						
	0 = Internal cl	ock (FP)		5 5-7						
bit 0	Unimplement	ted: Read as ')'							
Note 1: \	When Timer1 is en attempts by user so	abled in Exterr oftware to write	al Synchrono to the TMR1	us Counter mo register are ig	ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any			

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

NOTES:

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSE	-<4:0>: Trigger/Synchronization Source Selection bits
	11111 =	OCxRS compare event is used for synchronization
	11110 =	INT2 pin synchronizes or triggers OCx
	11101 =	INT1 pin synchronizes or triggers OCx
	11100 =	CTMU module synchronizes or triggers OCx
	11011 =	ADC1 module synchronizes or triggers OCx
	11010 =	CMP3 module synchronizes or triggers OCx
	11001 =	CMP2 module synchronizes or triggers OCx
	11000 =	CMP1 module synchronizes or triggers OCx
	10111 =	Reserved
	10110 =	Reserved
	10101 =	Reserved
	10100 =	Reserved
	10011 =	IC4 input capture event synchronizes or triggers OCx
	10010 =	IC3 input capture event synchronizes or triggers OCx
	10001 =	IC2 input capture event synchronizes or triggers OCx
	10000 =	IC1 input capture event synchronizes or triggers OCx
	01111 =	Timer5 synchronizes or triggers OCx
	01110 =	Timer4 synchronizes or triggers OCx
	01101 =	Timer3 synchronizes or triggers OCx
	01100 =	Timer2 synchronizes or triggers OCx (default)
	01011 =	Timer1 synchronizes or triggers OCx
	01010 =	PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 =	Reserved
	01000 =	Reserved
	00111 =	Reserved
	00110 =	Reserved
	00101 =	Reserved
	00100 =	OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 =	OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 =	OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 =	OC1 module synchronizes or triggers OCx ^(1,2)
	00000 =	No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGDI	V<3:0>		—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TRGSTF	RT<5:0>(1)		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	TRGDIV<3:0)>: Trigger # Ou	tput Divider b	vits			
	1111 = Trigg	er output for ev	ery 16th trigg	er event			
	1110 = Trigg	er output for ev	ery 15th trigg	er event			
	1101 = Trigg	er output for ev	ery 14th trigg	er event			
	1100 = Trigg	er output for ev	ery 13th trigg	er event			
	1011 = Irigg	er output for ev	ery 12th trigg	er event			
	1010 = Trigg	per output for ev	ery 11th trigge	er event			
	1001 - Trigg	er output for ev	ery 9th triage	r event			
	0111 = Trigg	er output for ev	erv 8th triage	r event			
	0110 = Trigg	er output for ev	erv 7th triage	r event			
	0101 = Trigg	er output for ev	ery 6th trigge	r event			
	0100 = Trigg	jer output for ev	ery 5th trigge	r event			
	0011 = Trigg	er output for ev	ery 4th trigge	r event			
	0010 = Trigg	er output for ev	ery 3rd trigge	r event			
	0001 = Trigg	er output for ev	ery 2nd trigge	erevent			
	0000 = Trigg	ger output for ev	ery trigger ev	ent			
bit 11-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TRGSTRT<5	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾		
	111111 = W	aits 63 PWM cy	cles before g	enerating the fir	rst trigger event	after the modu	le is enabled
	•						
	•						
	•						
	000010 = W	aits 2 PWM cyc	les before ge	nerating the firs	t trigger event a	after the module	e is enabled
	000001 = W	aits 1 PWM cyc	le before gen	erating the first	trigger event a	fter the module	is enabled
	000000 = W	aits 0 PWM cyc	les before ge	nerating the firs	t trigger event	after the module	e is enabled

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15	1		1		1		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	BCH(")	BCL	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit			
	\perp = Rising edg 0 = Leading-E	ge of PyvivixH v Edge Blanking i	anores risina	edge of PWM	anking counter kH		
bit 14	PHF: PWMxH	Falling Edge	Trigger Enabl	e bit			
	1 = Falling ed	ge of PWMxH	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	хH		
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit oding Edgo Blo	nking countor		
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	kL		
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit			
	1 = Falling ed	ge of PWMxL	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	xL		
bit 11	1 = Leading-F	-ault Input Lea Edge Blanking i	ding-Edge Bla	anking Enable	bit		
	0 = Leading-E	Edge Blanking i	s not applied	to selected Fa	ult input		
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit		
	1 = Leading-E	Edge Blanking i	s applied to s	selected curren	t-limit input		
hit 0.6	0 = Leading-E	tode Blanking I	s not applied	to selected cul	rrent-limit input		
bit 5	BCH Blankin	a in Selected F	J Blanking Sign	al High Enable	hit(1)		
bit 5	1 = State blan	kina (of curren	t-limit and/or	Fault input sigr	nals) when seled	ted blanking s	ianal is hiah
	0 = No blankii	ng when select	ed blanking s	signal is high	,	5	0 0
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	bit ⁽¹⁾		
	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when seled	cted blanking s	ignal is low
bit 3	BPHH: Blanki	ing in PWMxH	High Enable	hit			
bit o	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
	0 = No blanki	ng when PWM	xH output is h	nigh			-
bit 2	BPHL: Blanki	ng in PWMxH	Low Enable b	pit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xH output is le	Fault input sigr ow	nals) when PWN	IxH output is lo	W
bit 1	BPLH: Blanki	ng in PWMxL I	High Enable b	oit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xL output is h	Fault input sigr igh	nals) when PWN	/IxL output is hi	igh
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it			
	1 = State blan	king (of curren	t-limit and/or	Fault input sigr	nals) when PWN	IxL output is lo	W
	v = i N o diankii		x∟ output is io	JVV			

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB						
bit 15					• •		bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x						
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA						
bit 7							bit 0						
Legend:	a hit	\// - \//ritabla	h it	II – Unimploy	monted bit read	4 a.a. (0)							
n - Value at		vv = vvii(able	DIL	$0^{\circ} = 0$	nented bit, read	v – Ritic unkn							
		1 - Dit 13 36t			areu								
bit 15	OCAPEN: OF	-I Position Cou	nter Input Cap	ture Enable bit									
	1 = Index ma	tch event trigge	ers a position c	apture event									
	0 = Index ma	tch event does	not trigger a p	osition capture	event								
bit 14	FLTREN: QE	Ax/QEBx/INDX	x/HOMEx Digi	ital Filter Enabl	e bit								
	1 = Input pin	digital filter is e digital filter is d	nabled isabled (bypas	eed)									
hit 13_11			NDXv/HOMEv	Digital Input Fi	ilter Clock Divid	a Salact hits							
511 15-11	111 = 1:128 (clock divide		Digital Input I									
	110 = 1:64 cl	ock divide											
	101 = 1:32 cl	ock divide											
	100 = 1.16 cm 011 = 1:8 clo	011 = 1:8 clock divide											
	010 = 1:4 clo	010 = 1:4 clock divide											
	001 = 1:2 clo	ck divide ck divide											
hit 10₋9			Output Functi	ion Mode Sele	rt hits								
bit 10 5	11 = The CTN	VCMPx pin ace	s high when C	$EI1LEC \ge POS$	$S1CNT \ge QEI10$	GEC							
	10 = The CTM	NCMPx pin goe	s high when P	$OS1CNT \leq QE$	EIILEC								
	01 = The CT	NCMPx pin goe	s high when P	$OS1CNT \ge QE$	EI1GEC								
hit 8	SWPAB: Swa	s uisabled an OEA and OE	B Innuts hit										
bit 0	1 = QEAx and	d QEBx are swa	apped prior to	quadrature de	coder logic								
	0 = QEAx and	d QEBx are not	swapped	1									
bit 7	HOMPOL: HO	OMEx Input Po	larity Select bit	t									
	1 = Input is in	iverted											
hit 6		ot inverted Vy Input Dolori	ty Soloot bit										
DILO	1 = Input is in	verted	ly Select bit										
	0 = Input is no	ot inverted											
bit 5	QEBPOL: QE	EBx Input Polar	ity Select bit										
	1 = Input is ir	nverted											
L:1 4		ot inverted	:										
DIT 4		EAX Input Polar	ity Select bit										
	1 = 10000000000000000000000000000000000	not inverted											
bit 3	HOME: Statu	s of HOMEx In	out Pin After P	olarity Control									
	1 = Pin is at I	logic '1'		-									
	0 = Pin is at	logic '0'											

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN					
bit 7							bit 0					
Legend:												
R = Readabl	e hit	W = Writable	hit	= Inimple	mented hit read	1 as 'N'						
-n = Value at	POR	'1' = Rit is set	bit F	$0^{\circ} = \text{Bit is clipted}$	eared	x = Bit is unk	nown					
		1 - Dit 13 3C			carca							
bit 15	HLMS: High	or Low-Level	Masking Select	t bits								
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	arator signal fro	m propagating					
	0 = The masł	king (blanking)	function will pre	event any asse	erted ('1') compa	arator signal from	m propagating					
bit 14	Unimplemer	nted: Read as	'0'									
bit 13	OCEN: OR O	Gate C Input Er	nable bit									
	1 = MCI is co	onnected to OF	R gate									
	0 = MCI is no	ot connected to	OR gate									
bit 12	OCNEN: OR	Gate C Input	Inverted Enable	e bit								
	1 = Inverted	MCI is connect	ted to OR gate	ate								
hit 11		Sate B Input Fr	neelee to on g	juic								
Sit II	1 = MBI is co	onnected to OR	aate									
	0 = MBI is no	ot connected to	OR gate									
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit								
	1 = Inverted	MBI is connect	connected to OR gate									
	0 = Inverted	MBI is not con	nected to OR g	gate								
bit 9	OAEN: OR Gate A Input Enable bit											
	1 = MAI is co	1 = MAI is connected to OR gate										
hit 8		0 = MAI is not connected to UK gate										
DILO	1 = Inverted	MAL is connect	red to OR gate	e bit								
	0 = Inverted	0 = Inverted MAI is not connected to OR gate										
bit 7	NAGS: AND	NAGS: AND Gate Output Inverted Enable bit										
	1 = Inverted	ANDI is conne	cted to OR gat	e								
	0 = Inverted	ANDI is not co		gate								
bit 6		Gate Output E	nable bit									
	0 = ANDI is r	not connected to O	to OR gate									
bit 5	ACEN: AND	Gate C Input E	Enable bit									
	1 = MCI is co	onnected to AN	ID gate									
	0 = MCI is no	ot connected to	AND gate									
bit 4	ACNEN: AN	D Gate C Input	Inverted Enat	ole bit								
	1 = Inverted	MCI is connect	ted to AND gat	te								
	0 = Inverted	IVICI IS NOT CON	nected to AND	gate								

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3 ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate bit 0 AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	-	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Characteristic Min		Max	Units	Conditions		
ADC Accuracy (12-Bit Mode) ⁽¹⁾									
HAD20a	Nr	Resolution ⁽³⁾	12 Data Bits			bits			
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD23a	Gerr	Gain Error	-10	_	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD24a	EOFF	Offset Error	-5	—	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
Dynamic Performance (12-Bit Mode) ⁽²⁾									
HAD33a	FNYQ	Input Signal Bandwidth	_	_	200	kHz			

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions				
	ADC Accuracy (10-Bit Mode) ⁽¹⁾									
HAD20b	Nr	Resolution ⁽³⁾	10 Data Bits			bits				
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23b	Gerr	Gain Error	-2.5	_	2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
Dynamic Performance (10-Bit Mode) ⁽²⁾										
HAD33b	Fnyq	Input Signal Bandwidth		_	400	kHz				

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.