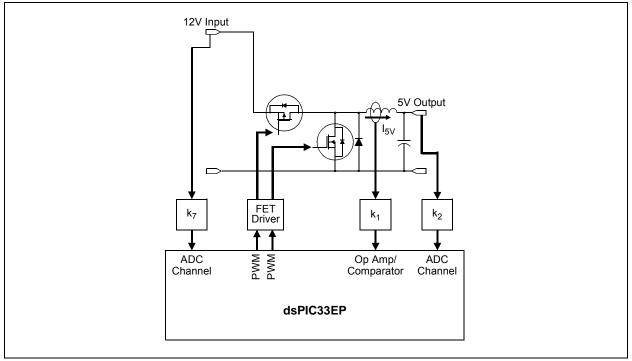


Welcome to E-XFL.COM

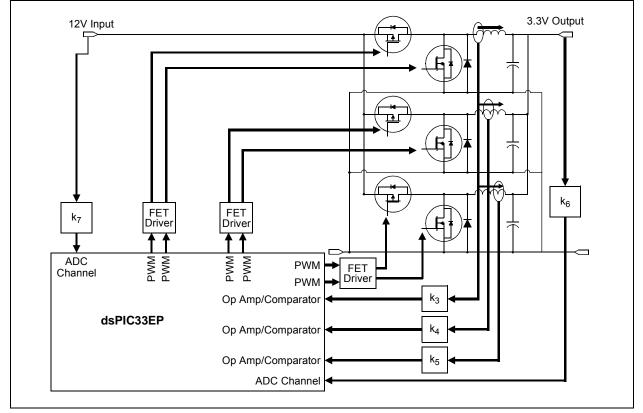
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

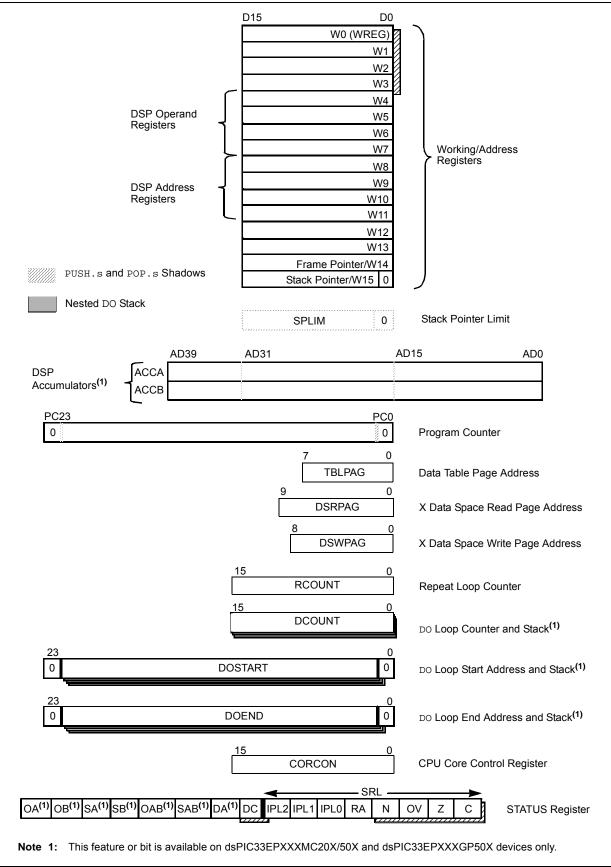
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

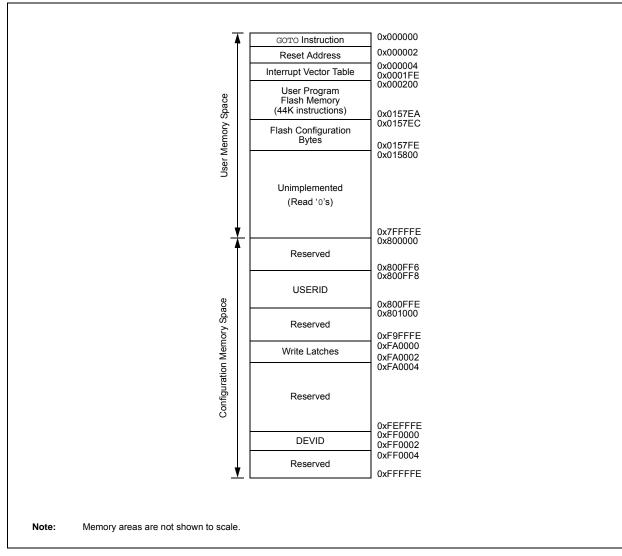

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc204t-i-tl


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER



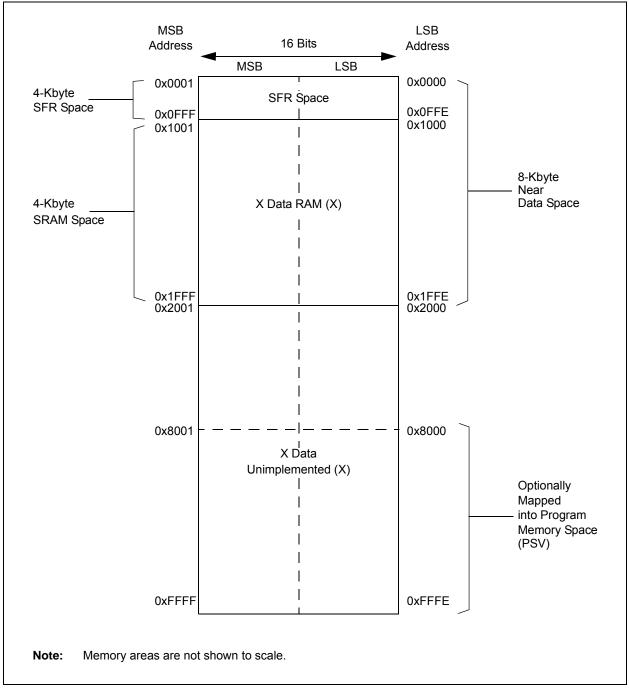


FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_		_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	—	_	CMPMD	_	-	CRCMD	_				_	I2C2MD	_	0000
PMD4	0766		_	_	—	_		_	-	—	_			REFOMD	CTMUMD	_	_	0000
PMD6	076A		—		—	_		_		—	_				—	—		0000
													DMA0MD					
PMD7	076C	_			_								DMA1MD	PTGMD	_			0000
	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD		_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_		_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	—	-	_			PWM3MD	PWM2MD	PWM1MD	_	—	—	_		—	_		0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

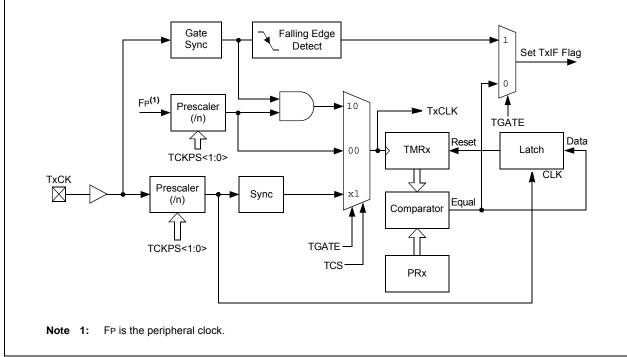
The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

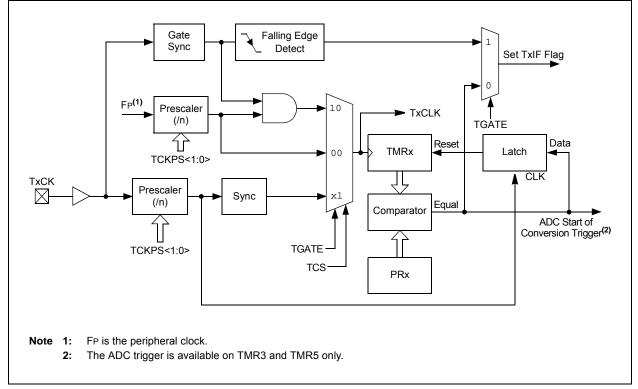
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	—	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	_	_
TMR3 – Timer3	00001000	—	_
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	_
ECAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—


TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

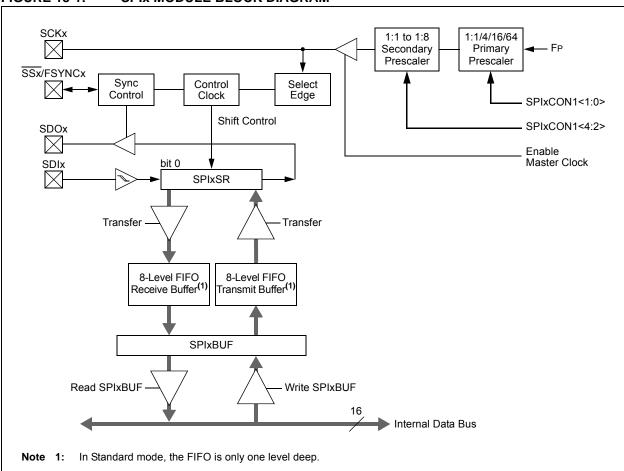

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEB1R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA1R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111001 =	1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	121 P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1 1111001 =	>: Assign A (QE 1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	selection nun 121 P1		n Pin bits		

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SCK2INR<6:0	>		
bit 15							bit 8
					5444.6	D 444 A	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as 'o	כי				
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits	

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)


15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

15.1.1 KEY RESOURCES

- "Output Compare" (DS70358) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

RXOVF4

bit 7			bit 0
Legend:	C = Writable bit, but or	nly '0' can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

RXOVF3

RXOVF2

R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read	d as 0
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

RXOVF6

RXOVF7

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

RXOVF5

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but or	nly '0' can be written to clear t	the bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

RXOVF0

RXOVF1

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 2			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			B	yte 5				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
				yte 4				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

22.2 CTMU Control Registers

REGISTER	22-1: CTM	UCON1: CTMU	J CONTROL	. REGISTER	1			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—	_		<u> </u>		_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled								
bit 14	bit 14 Unimplemented: Read as '0'							
bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode								
bit 12	TGEN: Time	Generation Ena	ble bit					

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

	 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion
	0 = CTMU does not trigger ADC start of conversion
bit 7-0	Unimplemented: Read as '0'

1 = Enables edge delay generation0 = Disables edge delay generation

EDGEN: Edge Enable bit

bit 11

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_		_	_	_
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
	011110 = Ma •		e change nom		1 00 /0		
	• • • • • • • • • • • • • • • • • • •	nimum positive nimum positive minal current c nimum negative	change from r change from r output specified e change from	nominal current nominal current l by IRNG<1:0> nominal curren nominal curren	+ 4% + 2% t – 2%		
	• • • • • • • • • • • • • •	nimum positive nimum positive minal current o nimum negative nimum negative ximum negative	change from r change from r output specified e change from e change from re change from	nominal current nominal current l by IRNG<1:0> nominal curren	+ 4% + 2% - t – 2% t – 4%		
bit 9-8	• • • • • • • • • • • • • •	nimum positive nimum positive minal current o nimum negative nimum negative ximum negative current Source ase Current ⁽²⁾ se Current ⁽²⁾	change from r change from r output specified e change from e change from re change from re change from Range Select	nominal current nominal current l by IRNG<1:0> nominal curren nominal curren	+ 4% + 2% - t – 2% t – 4%		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit
	 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt 0 = Always starts filling the buffer from the start address.
bit 0	ALTS: Alternate Input Sample Mode Select bit

1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11010 = Channel 0 positive input is the output of OA3/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	•
	•
	00010 = Channel 0 positive input is $AN2^{(1,3)}$
	00001 = Channel 0 positive input is $AN1^{(1,3)}$
	00000 = Channel 0 positive input is AN0 ^(1,3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
	CVR2OE ⁽¹⁾	_		_	VREFSEL		_
bit 15							bit
D 444 0	DANIO		D 444.0	D 444 0	DAALO	DAMA	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVR10E ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimplement						
bit 14		•	ige Reference	•	ble bit ⁽¹⁾		
			nected to the C onnected from		nin		
bit 13-11	Unimplement				F		
bit 10	-		age Reference	e Select bit			
	1 = CVREFIN =	-	U				
	0 = CVREFIN is	s generated by	y the resistor ne	etwork			
bit 9-8	Unimplement	ed: Read as '	0'				
bit 7			e Reference E				
			erence circuit is erence circuit is		wn		
bit 6	CVR1OE: Co	mparator Volta	ige Reference	1 Output Ena	ble bit ⁽¹⁾		
			n the CVREF1C		n		
bit 5	CVRR: Comp	arator Voltage	Reference Ra	nge Selection	n bit		
	1 = CVRSRC/2 0 = CVRSRC/3	•					
bit 4	CVRSS: Com	parator Voltag	e Reference S	ource Selecti	on bit ⁽²⁾		
		0	erence source, erence source,	· ·	ref+) – (AVss) /dd – AVss		
bit 3-0	CVR<3:0> Co	mparator Volt	age Reference	Value Select	ion $0 \leq CVR < 3$:	$0> \le 15$ bits	
	When CVRR =		(CVRSRC)				
	When CVRR = CVREFIN = (CV	= 0:		(\mathbf{C})			

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

DC CH	ARACTE	RISTICS	(unless	d Operating otherwise g temperat	stated) ure -40°	C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	liL	Input Leakage Current ^(1,2)					
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in at high-impedance} \end{split}$
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.