

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc206t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15							bit 8
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2	IPL1	IPL0	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾				
	1 = Accumula	ator A has over	flowed				
	0 = Accumula	ator A has not c	verflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator B has over	flowed				
hit 13		lator A Saturatio	n 'Sticky' Sta	tue hit(1,4)			
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time		
	0 = Accumula	ator A is not sat	urated		Some time		
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time		
	0 = Accumula	ator B is not sat	urated				
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾		
	1 = Accumula	ators A or B have	ve overflowed				
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)		
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1	
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time	
hit 9		Active hit(1)		alou			
bit 0	1 = DO loop is	s in progress					
	0 = DO loop is	s not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)
	of the re	sult occurred					
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized
	uala) U						
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit 8
							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA(1)	SATB	SATDW ⁽¹⁾	ACCSAT(1)	IPL3(3)	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7							bit 0
Legend:		C - Clearable	hit				
R = Reada	hle hit	W = Writable	hit	U = Unimple	mented hit read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			1				
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	ing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits ⁽¹⁾			
	11 = Reserve	ed nine multiplies	are mixed sign	,			
	01 = DSP eng	gine multiplies	are unsigned	1			
	00 = DSP eng	gine multiplies	are signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control bi	it(1,2)			
	1 = Terminate 0 = No effect	es executing DO	loop at end o	f current loop	iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status bi	ts ⁽¹⁾			
	111 = 7 do lo	ops are active					
	•						
	•						
	001 = 1 DO IO	on is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾				
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit ⁽¹⁾				
	1 = Accumula	ator B saturatio	n is enabled				
	0 = Accumula	ator B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾		
	1 = Data Space	ce write satura ce write satura	tion is enabled tion is disabled	1			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit ⁽¹⁾			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (3)			
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7			
	0 = CPU inter	riupt Priority Le	evel is / or less	5			
Note 1: 2:	This bit is available This bit is always r	e on dsPIC33E read as '0'.	PXXXMC20X/	50X and dsPI	C33EPXXXGP	50X devices on	ly.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

TABLE 4	-1:	CPU C	ORE RE	GISTE	R MAP F	OR dsF	PIC33EP	XXXMC	20X/50X	AND d	sPIC33I	EPXXX	GP50X	DEVICE	S ONL	(CON	TINUE	D)
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US<	1:0>	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWM	<3:0>			YWM<	:3:0>			XWM<	3:0>		0000
XMODSRT	0048							XMC	DSRT<15:0	>							_	0000
XMODEND	004A		XMODEND<15:0> — (0001			
YMODSRT	004C							YMC	DSRT<15:0	>								0000
YMODEND	004E							YMC	DEND<15:0)>								0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	DISICNT<13:0> 0000															
TBLPAG	0054		TBLPAG<7:0> 0000															
MSTRPR	0058	MSTRPR<15:0> 0000												0000				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 64

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR ds	sPIC33E	PXXXG	P50X D	EVICES	3 ONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets					
RPINR0	06A0	—				INT1R<6:0>					—	—	—	—	_			0000					
RPINR1	06A2		_			_	_		—					INT2R<6:0>				0000					
RPINR3	06A6		_			_	_		—		T2CKR<6:0>						- T2CKR<6:0> 000						0000
RPINR7	06AE		IC2R<6:0>								IC1R<6:0>						0000						
RPINR8	06B0	_				IC4R<6:0>				— IC3R<6:0>						- IC3R<6:0>							
RPINR11	06B6	_	_	_	_	_	-	_	_	_	OCFAR<6:0>				0000								
RPINR18	06C4	_	_	_	_	_	-	_	_	_	U1RXR<6:0>				0000								
RPINR19	06C6	_	_	_	_	_	-	_	_	_	U2RXR<6:0>					0000							
RPINR22	06CC	_			S	CK2INR<6:0)>			_	- SDI2R<6:0> 0						0000						
RPINR23	06CE	_	_	_	_	_	-	_	_	_	- SS2R<6:0> 00					0000							
RPINR26	06D4	_	_	-		_	—		_		- C1RXR<6:0> 0					0000							

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	>			_	—	—	—			_	_	0000
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_	OCFAR<6:0>						0000	
RPINR12	06B8	_				FLT2R<6:0>	>			_	— FLT1R<6:0>							0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:()>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:	0>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_	_	_	_	_	_	_	_	_	– C1RXR<6:0>						0000	
RPINR37	06EA	_			S	YNCI1R<6:	0>									0000		
RPINR38	06EC	—			D	CMP1R<6	:0>			—	—	—	_		—	—	—	0000
RPINR39	06EE	_			D	CMP3R<6	:0>		— DTCMP2R<6:0>							0000		

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	-	-	-	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	_	_	—	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	-	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
													DMA0MD					
	0760												DMA1MD	DTCMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	—	_	—		OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
	0760												DMA1MD	DTCMD				0000
FIND	0/00	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_		0000
													DMA3MD					1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

bit 15	VAR: Variable Exception Processing Latency Control
	1 = Variable exception processing is enabled
	0 = Fixed exception processing is enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	1 = CPU Interrupt Priority Level is greater than 7
	0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—		—	_	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
	—	<u> </u>	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3	RQCOL3: DM	1A Channel 3 T	ransfer Requ	est Collision F	ag bit			
	1 = User forc	e and interrupt	-based reque	st collision is d	etected			
	0 = No reque	est collision is d	etected					
bit 2	RQCOL2: DM	IA Channel 2 T	ransfer Requ	est Collision Fl	ag bit			
	1 = User forc	e and interrupt	-based reques	st collision is d	etected			
bit 1		A Channel 1 T	ransfer Pequ	est Collision Fl	ag hit			
DICT	1 = User force			est collision is d	etected			
	0 = No reque	est collision is d	etected		ciccicu			
bit 0	RQCOLO: DM	1A Channel 0 T	ransfer Requ	est Collision Fl	lag bit			
	1 = User forc	e and interrupt	-based reque	st collision is d	etected			

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

11.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB		
bit 15					• •		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x		
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA		
bit 7							bit 0		
Legend:	a hit	\// - \//ritabla	h it	II – Unimploy	monted bit read	4 a.a. (0)			
n - Value at		vv = vvii(able	DIL	$0^{\circ} = 0$	nented bit, read	v – Ritic unkn			
		1 - Dit 13 36t			areu				
bit 15	OCAPEN: OF	-I Position Cou	nter Input Cap	ture Enable bit					
	1 = Index ma	tch event trigge	ers a position c	apture event					
	0 = Index ma	tch event does	not trigger a p	osition capture	event				
bit 14	FLTREN: QE	Ax/QEBx/INDX	x/HOMEx Digi	ital Filter Enabl	e bit				
	1 = Input pin	digital filter is e digital filter is d	nabled isabled (bypas	eed)					
hit 13_11			NDXv/HOMEv	Digital Input Fi	ilter Clock Divid	a Salact hits			
511 15-11	111 = 1:128 (clock divide		Digital Input I					
	110 = 1:64 cl	10 = 1:64 clock divide							
	101 = 1:32 cl	01 = 1:32 clock divide							
	100 = 1.16 cm 011 = 1:8 clo	11 = 1.8 clock divide							
	010 = 1:4 clo	10 = 1:4 clock divide							
	001 = 1:2 clo	ck divide ck divide							
hit 10-9			Output Functi	ion Mode Sele	rt hits				
bit 10 5	11 = The CTN	VCMPx pin ace	s high when C	$EI1LEC \ge POS$	$S1CNT \ge QEI10$	GEC			
	10 = The CTM	NCMPx pin goe	s high when P	$OS1CNT \leq QE$	EIILEC				
	01 = The CT	NCMPx pin goe	s high when P	$OS1CNT \ge QE$	EI1GEC				
hit 8	SWPAB: Swa	00 = Output is disabledSWDAR: Swap QEA and QER liquits bit							
bit 0	1 = QEAx and	d QEBx are swa	apped prior to	quadrature de	coder logic				
	0 = QEAx and	d QEBx are not	swapped	1					
bit 7	HOMPOL: HO	OMEx Input Po	larity Select bit	t					
	1 = Input is in	1 = Input is inverted							
hit 6		ot inverted Vy Input Dolori	ty Soloot bit						
DILO	1 = Input is in	verted	ly Select bit						
	0 = Input is no	ot inverted							
bit 5	QEBPOL: QE	EBx Input Polar	ity Select bit						
	1 = Input is ir	nverted							
L:1 4		ot inverted	:						
DIT 4		EAX Input Polar	ity Select bit						
	1 = 10000000000000000000000000000000000	not inverted							
bit 3	HOME: Statu	s of HOMEx In	out Pin After P	olarity Control					
	1 = Pin is at I	logic '1'		-					
	0 = Pin is at	logic '0'							

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BF	P<3:0>			F2B	P<3:0>		
bit 15			·			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F1BP<3:0>					F0B	P<3:0>		
bit 7						bit 0		
Legend:								
R = Readable bit W = Writable bit			U = Unimpler	nented bit, rea	ıd as '0'			
-n = Value at POR '1' = Bit is set			t	0' = Bit is cleared x = Bit is unknown				
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 I	oits				
	1111 = Filte	1111 = Filter hits received in RX FIFO buffer						
	1110 = Filte	1110 = Filter hits received in RX Buffer 14						
	•							
	•							
		r hito roccivad i	DV Duffer 1					
		r hits received in		1				
hit 11 0	E3DD -2:0		k for Filtor 2 l	, hito (como voluc	a aa hita <1 E 1	22)		
	F2BF<3:0>			oits (same value		Z ²)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 I	bits (same value	es as bits<15:1	2>)		
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 I	bits (same value	es as bits<15:1	2>)		

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 - Reserved
	11011 = Reserved
	11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽⁻⁾
	•
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	•
	• (1 2)
	00010 = Channel 0 positive input is AN2 ^(1,3)
	00001 = Channel 0 positive input is AN1(1,3)
	00000 = Channel 0 positive input is AN0(',3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾

h	it	7
υ	π.	1

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1: Th	nese bits apply to the PTGWHI and PTGWLO commands only.
	2: Th	is bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read		l as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-13 bit 12-8	PTGCLK<2:0 111 = Reserv 110 = Reserv 101 = PTG m 010 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m 000 = PTG m PTGDIV<4:02	 Select PTG red odule clock so 	Module Clock urce will be T3 urce will be T2 urce will be T1 urce will be T4 urce will be F6 urce will be F6 Clock Presca	Source bits CLK CLK CLK D SSC S ler (divider) bi	ts			
	11111 = Divic 11110 = Divic • • • • • • • • • • • • • • • • • • •	de-by-32 de-by-31 de-by-2 de-by-1						
bit 7-4	PTGPWD<3:0	0>: PTG Trigge	er Output Pulse	e-Width bits				
	1111 = All trig 1110 = All trig • • • • • • • • • • • • • • • • • • •	gger outputs ar gger outputs ar gger outputs ar gger outputs ar	e 16 PTG cloc e 15 PTG cloc e 2 PTG clock e 1 PTG clock	k cycles wide k cycles wide cycles wide cycles wide				
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	PTGWDT<2:0>: Select PTG Watchdog Timer Time-out Count Value bits							
	111 = Watcho 110 = Watcho 101 = Watcho 100 = Watcho 011 = Watcho 010 = Watcho 001 = Watcho 000 = Watcho	dog Timer will t dog Timer is dis	ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 1 ime-out after 8 sabled	512 PTG clock 256 PTG clock 28 PTG clock 54 PTG clocks 54 PTG clocks 6 PTG clocks 5 PTG clocks	S S S			

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

TyCON (Timer3 and Timer5 Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
VEL1CNT (Velocity Counter 1)	259
Resets	123
Brown-out Reset (BOR)	123
Configuration Mismatch Reset (CM)	123
Illegal Condition Reset (IOPUWR)	123
Illegal Opcode	123
Security	123
Uninitialized W Register	123
Master Clear (MCLR) Pin Reset	123
Power-on Reset (POR)	123
RESET Instruction (SWR)	123
Resources	124
Trap Conflict Reset (TRAPR)	123
Watchdog Timer Time-out Reset (WDTO)	123
Resources Required for Digital PFC	32, 34
Revision History	

S

Serial Peripheral Interface (SPI)	
Software Stack Pointer (SSP)	111
Special Features of the CPU	
SPI	
Control Registers	
Helpful Tips	
Resources	

т

Temperature and Voltage Specifications	
Thermal Operating Conditions 402	
Thermal Packaging Characteristics 402	
Timer1 203	
Control Register 205	
Resources	
Timer2/3 and Timer4/5	
Control Registers	
Resources 209	
Timing Diagrams	
10-Bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,	
SSRCG = 0)	
10-Bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SSRCG = 0, SAMC<4:0> = 00010)464	
12-Bit ADC Conversion (ASAM = 0,	
SSRC<2:0> = 000, SSRCG = 0)462	
BOR and Master Clear Reset 416	
ECANx I/O454	
External Clock414	
High-Speed PWMx Fault422	
High-Speed PWMx Module422	
I/O Characteristics416	
I2Cx Bus Data (Master Mode)450	
I2Cx Bus Data (Slave Mode)452	
I2Cx Bus Start/Stop Bits (Master Mode) 450	
I2Cx Bus Start/Stop Bits (Slave Mode)452	

Input Capture x (ICx)	. 420
OCx/PWMx	. 421
Output Compare x (OCx)	. 421
QEA/QEB Input	. 424
QEI Module Index Pulse	425
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 441
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 440
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 438
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 439
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 448
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 446
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 442
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	. 444
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 429
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	428
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 426
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 427
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 436
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 434
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 430
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	432
Timer1-Timer5 External Clock	. 418
TimerQ (QEI Module) External Clock	423
UARTx I/O	. 454

U

Universal Asynchronous Receiver	
Transmitter (UART)	. 281
Control Registers	. 283
Helpful Tips	. 282
Resources	. 282
User ID Words	. 384
V	
Voltage Regulator (On-Chip)	. 384

w

Watchdog Timer (WDT)	379, 385
Programming Considerations	385
WWW Address	524
WWW, On-Line Support	23