

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description					
C1IN1-	Ι	Analog	No	Op Amp/Comparator 1 Negative Input 1.					
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.					
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.					
OA1OUT	0	Analog	No	Op Amp 1 output.					
C10UT	0		Yes	Comparator 1 output.					
C2IN1-	Ι	Analog	No	Op Amp/Comparator 2 Negative Input 1.					
C2IN2-	I.	Analog	No	Comparator 2 Negative Input 2.					
C2IN1+	I.	Analog	No	Op Amp/Comparator 2 Positive Input 1.					
OA2OUT	0	Analog	No	Op Amp 2 output.					
C2OUT	0	—	Yes	Comparator 2 output.					
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.					
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.					
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.					
OA3OUT	0	Analog	No	Op Amp 3 output.					
C3OUT	0		Yes	Comparator 3 output.					
C4IN1-	I	Analog	No	Comparator 4 Negative Input 1.					
C4IN1+	I	Analog	No	Comparator 4 Positive Input 1.					
C4OUT	0	—	Yes	Comparator 4 output.					
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.					
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.					
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.					
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.					
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.					
PGEC2		SI	No	Clock input pin for Programming/Debugging Communication Channel 2.					
PGED3	1/0	SI	NO	Data I/O pin for Programming/Debugging Communication Channel 3.					
PGEC3	1	51	NO	Clock input pin for Programming/Debugging Communication Channel 3.					
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.					
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.					
VCAP	Р		No	CPU logic filter capacitor connection.					
Vss	Р		No	Ground reference for logic and I/O pins.					
VREF+	Ι	Analog	No	Analog voltage reference (high) input.					
VREF-	Ι	Analog	No	Analog voltage reference (low) input.					
Legend: CMOS = C	MOS co	ompatible	e input	or output Analog = Analog input P = Power					
ST = Schmi	tt Trigg	jer input v	with Cl	MOS levels O = Output I = Input					

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

	- 0.													••				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	—	_	_	_	_	—	_	_	_	_	—	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS6	080C	_	—	—	—	_	_	—	_	—	_	—		_	_		PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	—	_	_	—	_	—	_	—		_	_		_	0000
IFS9	0812		—	—	—		—	—	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	—	—	—	-	—	—	—	—	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	—	—	—	-	—	—	—	—	—	—	—	—	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	CTMUIE	—	_	—	—	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	—	—	_	—	—	—	_	—	_	_	—	—	_	_	0000
IEC9	0832	_	_	—	—	_	—	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>	>		(OC1IP<2:0)>	_	IC1IP<2:0>		— INT0IP<2:0>		4444			
IPC1	0842	_		T2IP<2:0>	>		(OC2IP<2:0)>	_		IC2IP<2:0>			DMA0IP<2:0>		4444	
IPC2	0844	_	ι	J1RXIP<2:	0>	_		SPI1IP<2:()>	_		SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3	0846	_			—		C	MA1IP<2:	0>	_		AD1IP<2:0>			ι	1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0	>			CMIP<2:0	>	_		MI2C1IP<2:0	>		S	I2C1IP<2:0>		4444
IPC5	084A	_			—			—	—	_	—	_	_	_	1	NT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		—		OC4IP<2:0)>	_		OC3IP<2:0>			D	MA2IP<2:0>		4444
IPC7	084E	_	I	U2TXIP<2:0>			ι	J2RXIP<2:	0>	_		INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	>		C	1RXIP<2:	0>	_		SPI2IP<2:0>	•		S	PI2EIP<2:0>		4444
IPC9	0852	_	—	—	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		—	D	MA3IP<2:0>		0444
IPC11	0856	_	—	—	—	_	—	—	—	_	—	—	—	—	—	_	_	0000
IPC12	0858	_	—	—	—	_	N	112C2IP<2	:0>	_		SI2C2IP<2:0	>	—	—	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>		—	—	_	_	4440
IPC17	0862	_	_	—	—	_	0	1TXIP<2:	0>	_	—	—	—	—	_	_	_	0400
IPC19	0866	_	_	—	_	_	_	_	_	_		CTMUIP<2:0	>	—	—	_	_	0040
IPC35	0886	_		JTAGIP<2:()>	_		ICDIP<2:0	>	_	—	—	—	—	_	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	_	PT	GWDTIP<	2:0>	_	P1	GSTEPIP<2	:0>	—	_	—	—	4440
IPC37	088A	_	—	_	_	_	F	TG3IP<2:	0>	_		PTG2IP<2:0	>	_	P	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾		
bit 15							bit 8		
r									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
[
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown		
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit						
	\perp = Interrupt	nesting is disa	ibled						
bit 14	OVAFRR: A	ccumulator A (Overflow Trap F	lag bit(1)					
2	1 = Trap was	s caused by ov	erflow of Accur	nulator A					
	0 = Trap was	s not caused b	y overflow of A	ccumulator A					
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	lag bit ⁽¹⁾					
	1 = Trap was	s caused by ow	erflow of Accur	nulator B					
	0 = Irap was	s not caused b	y overflow of A	ccumulator B	(1)				
bit 12	COVAERR:	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit ⁽¹⁾							
	1 = Trap was 0 = Trap was	s not caused by ca	v catastrophic over	overflow of Accu	mulator A				
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit ⁽¹⁾								
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B				
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	mulator B				
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit ⁽¹⁾					
	1 = Trap ove	rflow of Accun	nulator A						
hit 0			orflow Tran En	able bit(1)					
DIL 9	1 = Tran ove	rflow of Accun	nulator B						
	0 = Trap is d	isabled							
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enat	ole bit ⁽¹⁾					
	1 = Trap on o	catastrophic ov	erflow of Accu	mulator A or B is	s enabled				
	0 = Trap is d	isabled							
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit ⁽¹⁾					
	1 = Math erro	or trap was ca or trap was po	used by an inva t caused by an	alid accumulator	shift ator shift				
bit 6		ivide-hv-Zero	Error Status bit						
bit o	1 = Math erro	or trap was ca	used by a divide	e-bv-zero					
	0 = Math erro	or trap was no	t caused by a d	ivide-by-zero					
bit 5	DMACERR:	DMAC Trap F	lag bit						
	1 = DMAC tr	ap has occurre	ed						
	0 = DMAC tr	ap has not occ	curred						
Note 1: The	ese bits are ava	ailable on dsPl	C33EPXXXMC	20X/50X and de	PIC33EPXXX	GP50X devices	s only.		

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

NOTES:

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				·	-		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SS2R<6:0>			
bit 7	<u>.</u>						bit 0
Logondi							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

15.1.1 KEY RESOURCES

- "Output Compare" (DS70358) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB		
bit 15							bit 8		
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7 bit 0									
Legend:		HSC = Hardw	are Settable/Cl	earable bit					
R = Reada	ible bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '0)'						
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit					
	1 = Output C	compare x Halts	in CPU Idle me	ode via CDU Idia m	odo				
bit 12 10			nues lo operale		oue				
DIL 12-10	111 = Perinh	eral clock (Ep)	pare x Clock S						
	110 = Reserv	/ed							
	101 = PTGO	x clock ⁽²⁾							
	100 = T1CLK	is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)			
	011 = 15CLK	is the clock sou	urce of the OC	Х У					
	001 = T3CLK	is the clock so	urce of the OC	x X					
	000 = T2CLK	is the clock so	urce of the OC	ĸ					
bit 9	Unimplemen	ted: Read as '0)'						
bit 8	ENFLTB: Fau	ult B Input Enab	le bit						
	1 = Output C 0 = Output C	compare Fault B compare Fault B	input (OCFB) input (OCFB)	is enabled is disabled					
bit 7	ENFLTA: Fau	ult A Input Enabl	le bit						
	1 = Output C	ompare Fault A	input (OCFA)	is enabled					
	0 = Output C	ompare Fault A	input (OCFA)	is disabled					
bit 6	Unimplemen	ted: Read as '0)'						
bit 5	OCFLTB: PW	M Fault B Cond	dition Status bit						
	1 = PWM Fa 0 = No PWM	ult B condition of Fault B condition	on OCFB pin ha on on OCFB pi	as occurred n has occurred					
bit 4	OCFLTA: PW	/M Fault A Cond	dition Status bit						
	1 = PWM Fa	ult A condition of	on OCFA pin ha	as occurred					
	0 = No PWM	I Fault A condition	on on OCFA pi	n has occurred					
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	A mode only.					
2:	Each Output Cor	mpare x module	(OCx) has one	PTG clock sou	urce. See Secti	on 24.0 "Perip	oheral Trigger		
	Generator (PTG PTGO4 = OC1) wodule" for r	nore informatio	n.					
	PTGO5 = OC2								
	PTGO6 = OC3								
	PTGO7 = OC4								

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		0.0 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ¹³
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		When Set to '0':
		If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15	1		1		1		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	BCH(")	BCL	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit			
	\perp = Rising edg 0 = Leading-E	ge of PyvivixH v Edge Blanking i	anores risina	edge of PWM	anking counter kH		
bit 14	PHF: PWMxH	Falling Edge	Trigger Enabl	e bit			
	1 = Falling ed	ge of PWMxH	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	хH		
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit oding Edgo Blo	nking countor		
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	kL		
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit			
	1 = Falling ed	ge of PWMxL	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	xL		
bit 11	1 = Leading-F	-ault Input Lea Edge Blanking i	ding-Edge Bla	anking Enable	bit		
	0 = Leading-E	Edge Blanking i	s not applied	to selected Fa	ult input		
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit		
	1 = Leading-E	Edge Blanking i	s applied to s	selected curren	t-limit input		
hit 0.6	0 = Leading-E	tode Blanking I	s not applied	to selected cul	rrent-limit input		
bit 5	BCH Blankin	a in Selected F	J Blanking Sign	al High Enable	hit(1)		
bit 5	1 = State blan	kina (of curren	t-limit and/or	Fault input sigr	nals) when seled	ted blanking s	ianal is hiah
	0 = No blankii	ng when select	ed blanking s	signal is high	,	5	0 0
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	bit ⁽¹⁾		
	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when seled	cted blanking s	ignal is low
bit 3	BPHH: Blanki	ing in PWMxH	High Enable	hit			
bit o	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
	0 = No blanki	ng when PWM	xH output is h	nigh			-
bit 2	BPHL: Blanki	ng in PWMxH	Low Enable b	pit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xH output is le	Fault input sigr ow	nals) when PWN	IxH output is lo	W
bit 1	BPLH: Blanki	ng in PWMxL I	High Enable b	oit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xL output is h	Fault input sigr igh	nals) when PWN	/IxL output is hi	igh
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it			
	1 = State blan	king (of curren	t-limit and/or	Fault input sigr	nals) when PWN	IxL output is lo	W
	v = i N o diankii		x∟ output is io	JVV			

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. a Receive acquirement in program.
hit 2	0 = Receive sequence is not in progress
511 2	 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. a Stop condition is not in processor.
h :+ 4	0 = Stop condition is not in progress
DIT	RSEN: Repeated Start Condition Enable bit (when operating as I-C master)
	 Initiates Repeated Start condition on SDAx and SCLX pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_	_	_	_	_	_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE		
bit 7	bit 7 bit								
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as 'o)'						
bit 7	IVRIE: Invalid	I Message Inter	rupt Enable b	bit					
	1 = Interrupt r	equest is enab	led						
		request is not e	nabled						
DIT 6	WAKIE: Bus	vvake-up Activi	ty interrupt Er	Table bit					
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	request is enab	nabled						
bit 5	ERRIE: Frror	Interrupt Enab	le bit						
	1 = Interrupt r	request is enab	led						
	0 = Interrupt r	equest is not e	nabled						
bit 4	Unimplemen	ted: Read as 'o)'						
bit 3	FIFOIE: FIFO	Almost Full Inf	errupt Enable	e bit					
	1 = Interrupt r	request is enab	led						
	0 = Interrupt r	request is not e	nabled						
bit 2	RBOVIE: RX	Buffer Overflov	v Interrupt En	able bit					
	1 = Interrupt r	request is enab	led nabled						
hit 1	BBIE: BX But	ffer Interrunt Fr	nable hit						
bit 1	1 = Interrupt r	request is enab	led						
	0 = Interrupt r	request is not e	nabled						
bit 0	TBIE: TX Buff	fer Interrupt En	able bit						
	1 = Interrupt r	request is enab	led						
	0 = Interrupt r	request is not e	nabled						

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	с	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description	
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1): PIC24EP512GP202 PIC24EP512GP204 PIC24EP512GP206 dsPIC33EP512GP502 dsPIC33EP512GP506 The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2): PIC24EP512MC202 PIC24EP512MC204 PIC24EP512MC206 dsPIC33EP512MC202 dsPIC33EP512MC202 dsPIC33EP512MC204 dsPIC33EP512MC206 dsPIC33EP512MC206 dsPIC33EP512MC206 dsPIC33EP512MC506	
Section 4.0 "Momony	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.	
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-4). Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-11).	
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).	
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".	
Section 27.0 "Special Features"	 The following modifications were made to the Configuration Byte Register Map (see Table 27-1): Added the column Device Memory Size (Kbytes) Removed Notes 1 through 4 Added addresses for the new 512-Kbyte devices 	
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).	
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).	
	Updated the Minimum value for Parameter CM34 (see Table 30-53).	
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).	