

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc506-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	_	—	_	_	—				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				I2C1 Trans	mit Register				00FF
I2C1BRG	0204	_	_	_	_	_	_	_				Bau	d Rate Gen	erator				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 000									0000	
I2C1ADD	020A	—	_	—	_	—		I2C1 Address Register 000									0000	
I2C1MSK	020C	—	_	—	_	—						I2C1 Ad	dress Mask					0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	_		—	—		_	—				I2C2 Trans	mit Register				00FF
I2C2BRG	0214	—	_	—	_	—		_				Bau	d Rate Gen	erator				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	1 DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000								1000		
I2C2STAT	0218	ACKSTAT	TRSTAT		—	—	BCL	GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000										
I2C2ADD	021A	_		_	_	_	_					I2C2 Addr	ess Registe	r				0000
I2C2MSK	021C	_		_	_	_	_	I2C2 Address Mask 000									0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXI	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	—	_	_	_	_				UART	1 Transmit F	Register				xxxx
U1RXREG	0226	_	_	—	_	_	_	UART1 Receive Register 00								0000		
U1BRG	0228		Baud Rate Generator Prescaler 0000															
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXI	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	_	_	_				UART	2 Transmit F	Register				xxxx
U2RXREG	0236	_	_	—	_	_	_	_				UART	2 Receive F	Register				0000
U2BRG	0238							Baud	Rate Gen	erator Pre	scaler							0000
			- ·															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register 0000											0000				
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0)>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—		DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268	D268 SPI2 Transmit and Receive Buffer Register 001											0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

			PERIFIERAL FIN SELECT INFOT REGISTER MAP FOR FIC24EFAAAMC20A DEVICES ONLT															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			—	-	-	_	—	—	—	—	0000
RPINR1	06A2	_	_	_	_	_	—	_	—	_				INT2R<6:0>	•			0000
RPINR3	06A6	_	_	_	_		_		—	_			-	T2CKR<6:0	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_	IC3R<6:0>							0000
RPINR11	06B6	_	_							_	OCFAR<6:0>							0000
RPINR12	06B8	_		FLT2R<6:0>							FLT1R<6:0>							0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0	0>			_	INDX1R<6:0>							0000
RPINR18	06C4		_	_	_	_	—	_	_	_	U1RXR<6:0>						0000	
RPINR19	06C6		_	_	_	_	—	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:	0>			_				SDI2R<6:0>	•			0000
RPINR23	06CE		_	_	_	_	—	_	_	_				SS2R<6:0>				0000
RPINR26	06D4		_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	0000
RPINR37	06EA			SYNCI1R<6:0>						_						0000		
RPINR38	06EC	_		DTCMP1R<6:0>						_							0000	
RPINR39	06EE	_		DTCMP3R<6:0>						_	DTCMP2R<6:0>						0000	

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	•			_	—	—	—	_	—	—		0000
RPINR1	06A2	—	_	_	—	_	_	—	—	_				INT2R<6:0>	•			0000
RPINR3	06A6	—	_								T2CKR<6:0>							
RPINR7	06AE	—		IC2R<6:0>								IC1R<6:0>						
RPINR8	06B0	_				IC4R<6:0>				_		IC3R<6:0>						
RPINR11	06B6	_	_	_	_	_	_	_	_	_	OCFAR<6:0>							0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_							_	_	U2RXR<6:0> 01						0000	
RPINR22	06CC	_	SCK2INR<6:0>							_	SDI2R<6:0> 00						0000	
RPINR23	06CE	_						_	_	SS2R<6:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15	·					•	bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits			
	1111 = CPU	Interrupt Priori	y Level is 15				
	•						
	•						
	0001 = CPU 0000 = CPU	Interrupt Priorif Interrupt Priorif	y Level is 1 y Level is 0				
bit 7-0	VECNUM<7:0	D>: Vector Nun	- nber of Pendin	g Interrupt bits			
	11111111 = 2	255, Reserved	; do not use	0 1			
	•						
	•						
	•						
	00001001 =	9, IC1 – Input (Capture 1				
	00001000 =	8, INT0 – Exter	rnal Interrupt ()			
	00000111 = 00000110 = 00000110 = 00000110 = 00000110 = 00000100000000	7, Reserved; d	o not use				
	00000101 = 00000101 = 000000101 = 00000000	5. DMAC error	trap				
	00000100 =	4, Math error tr	ap				
	00000011 =	3, Stack error t	rap				
	00000010 = 2	2, Generic har	d trap				
	00000001 =	1, Address erro	or trap				
	0000000000	o, Oscillator la	nuap				

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
I a manuali							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_			DTR)	<13:8>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTR	2x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDT	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDT	Rx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 17-7: VEL1CNT: VELOCITY COUNTER 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			VELC	NT<15:8>								
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			VELC	NT<7:0>								
bit 7							bit 0					
Legend:												
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					

bit 15-0 VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8: INDX1CNTH: INDEX COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN	T<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

REGISTER 17-9: INDX1CNTL: INDEX COUNTER 1 LOW WORD REGISTER

'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	:	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

-n = Value at POR

x = Bit is unknown

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend				
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Valu	ie at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BF	°<3:0>			F2B	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BF	?<3:0>		F0BP<3:0>				
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	pits				
	1111 = Filte	r hits received ir	n RX FIFO bu	uffer				
	1110 = Filte	r hits received ir	n RX Buffer 1	4				
	•							
	•							
	0001 = Filte	r hits received ir	n RX Buffer 1					
	0000 = Filte	r hits received ir	n RX Buffer 0					
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 k	oits (same value	s as bits<15:1	2>)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)		
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 k	oits (same value	s as bits<15:1	2>)		
						,		

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7M	SK<1:0>	F6MSI	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3M	SK<1:0>	F2MSI	K<1:0>	F1MS	K<1:0>	F0MS	K<1:0>
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	F7MSK<1:0: 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	>: Mask Source ed ance Mask 2 re ance Mask 1 re ance Mask 0 re	for Filter 7 bi gisters contair gisters contair gisters contair	ts n mask n mask n mask			
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bi	ts (same values	as bits<15:14	! >)	
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bi	ts (same values	as bits<15:14	! >)	
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bi	ts (same values	as bits<15:14	! >)	
bit 7-6	F3MSK<1:0:	>: Mask Source	for Filter 3 bi	ts (same values	s as bits<15:14	l>)	
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bi	ts (same values	s as bits<15:14	ł>)	
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bi	ts (same values	s as bits<15:14	ł>)	
bit 1-0	F0MSK<1:0:	Hask Source	for Filter 0 bi	0 bits (same values as bits<15:14>)			

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾
bit 7						-	bit 0
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn
bit 15	ADON: ADO	C1 Operating N	lode bit				
	1 = ADC mo	odule is operati	ng				
	0 = ADC is	off					
bit 14	Unimpleme	ented: Read as	'0'				
bit 13	ADSIDL: AI	DC1 Stop in Idle	e Mode bit				
	1 = Disconti	inues module o	peration when	device enters	Idle mode		
	0 = Continu	es module ope	ration in Idle mo	ode			
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit				
	1 = DMA b	uffers are writte	en in the order	of conversion	; the module p	provides an addre	ess to the DMA
	0 = DMA bi	uffers are writte	en in Scatter/Ga	ther mode: the	e module prov	ides a Scatter/Ga	ther address to
	the DM	A channel, bas	ed on the index	of the analog	input and the	size of the DMA	ouffer.
bit 11	Unimpleme	ented: Read as	'0'				
bit 10	AD12B: AD	C1 10-Bit or 12	2-Bit Operation	Mode bit			
	1 = 12-bit, 1	-channel ADC	operation				
	0 = 10-bit, 4	-channel ADC	operation				
bit 9-8	FORM<1:0	>: Data Output	Format bits				
	For 10-Bit C	Operation:					
	11 = Signed	d fractional (Do	UT = sddd ddd	ld dd00 000	0, where $s = $.	NOT.d<9>)	
	10 = Fractions	hai (DOUT = ac	100 0000 000 = cccc cccd		where $c = N($	(<0>b T(
	00 = Intege	r (Dout = 0000	00dd dddd	dddd)		51.u (0 ²)	
	For 12-Bit C	Deration:		,			
	11 = Signed	fractional (Do	UT = sddd ddd	ld dddd 000	0, where $s = .$	NOT.d<11>)	
	10 = Fractic	onal (Dout = do	ldd dddd ddd	ld 0000)			
	00 = Intege	r (DOUT = 0000	- ssss sada) dddd dddd	aaaa aaad, dddd)	where $s = .NC$	JI.U<112)	
		. (2001 - 0000		adduj			
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾
	or	0001	PWM master time base synchronization output. ⁽³⁾
	P.I.GWLO(''	0010	PWM1 interrupt. ⁽³⁾
		0011	PWM2 interrupt. ⁽³⁾
		0100	PWM3 interrupt. ⁽³⁾
		0101	Reserved.
		0110	Reserved.
		0111	OC1 Trigger event.
		1000	OC2 Trigger event.
		1001	IC1 Trigger event.
		1010	CMP1 Trigger event.
		1011	CMP2 Trigger event.
		1100	CMP3 Trigger event.
		1101	CMP4 Trigger event.
		1110	ADC conversion done interrupt.
		1111	INT2 external interrupt.
	PTGIRQ(1)	0000	Generate PTG Interrupt 0.
		0001	Generate PTG Interrupt 1.
		0010	Generate PTG Interrupt 2.
		0011	Generate PTG Interrupt 3.
		0100	Reserved.
		•	•
		•	•
		•	•
	(2)	1111	Reserved.
	PTGTRIG ⁽²⁾	00000	PTGO0.
		00001	PTGO1.
		•	•
		•	•
		•	
		11110	PTGO30.
		11111	PTGO31.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157). For more information on instructions that take more than one instruction cycle to execute, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*, particularly the **"Instruction Flow Types"** section.

Field	Description	
#text	Means literal defined by "text"	
(text)	Means "content of text"	
[text]	Means "the location addressed by text"	
{}	Optional field or operation	
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d	
<n:m></n:m>	Register bit field	
.b	Byte mode selection	
.d	Double-Word mode selection	
.S	Shadow register select	
.w	Word mode selection (default)	
Acc	One of two accumulators {A, B}	
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}	
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$	
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero	
Expr	Absolute address, label or expression (resolved by the linker)	
f	File register address ∈ {0x00000x1FFF}	
lit1	1-bit unsigned literal $\in \{0,1\}$	
lit4	4-bit unsigned literal ∈ {015}	
lit5	5-bit unsigned literal $\in \{031\}$	
lit8	8-bit unsigned literal \in {0255}	
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode	
lit14	14-bit unsigned literal $\in \{016384\}$	
lit16	16-bit unsigned literal $\in \{065535\}$	
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'	
None	Field does not require an entry, can be blank	
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate	
PC	Program Counter	
Slit10	10-bit signed literal \in {-512511}	
Slit16	16-bit signed literal ∈ {-3276832767}	
Slit6	6-bit signed literal \in {-1616}	
Wb	Base W register ∈ {W0W15}	
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }	
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }	

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).