

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

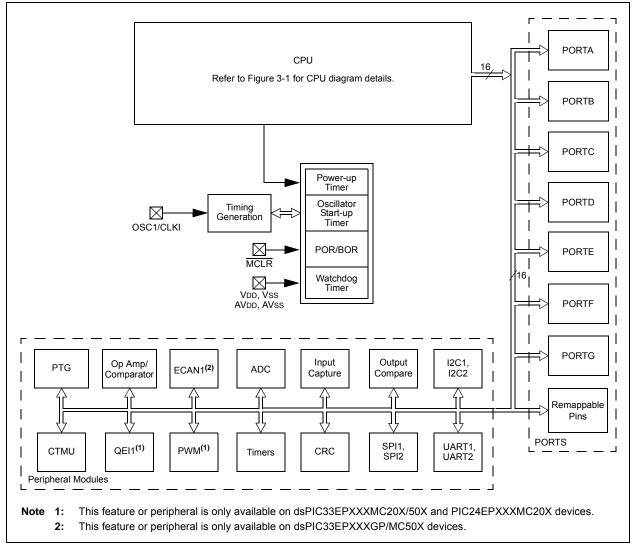
E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc506-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

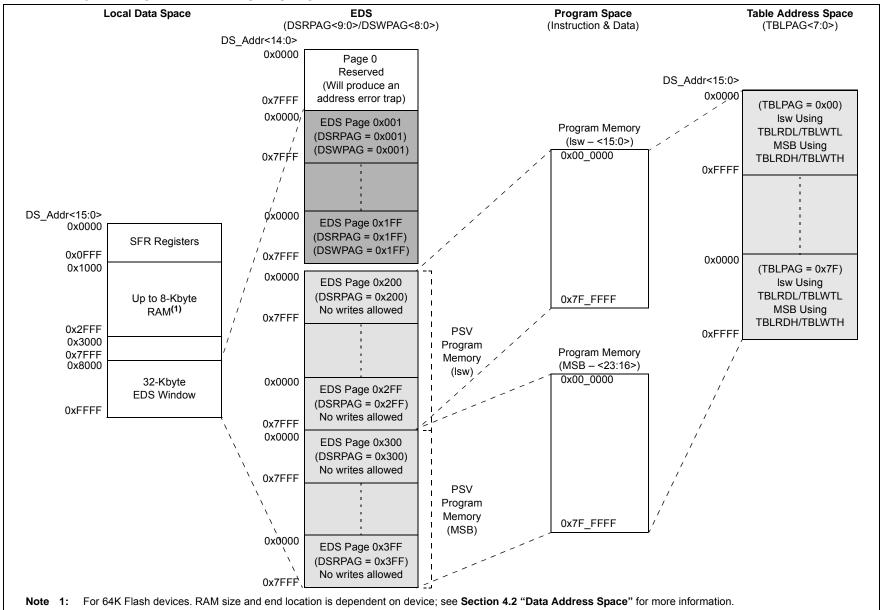
This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_		_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	—	_	CMPMD	_	-	CRCMD	_				_	I2C2MD	_	0000
PMD4	0766		_	_	—	_		_	-	—	_			REFOMD	CTMUMD	_	_	0000
PMD6	076A		—		—	_		_		—	_				—	—		0000
													DMA0MD					
PMD7	076C	_			_								DMA1MD	PTGMD	_			0000
	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD		_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_		_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	—	-	_			PWM3MD	PWM2MD	PWM1MD	_	—	—	_		—	_		0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0						
TRAPF	R IOPUWR	—	_	VREGSF	—	CM	VREGS						
bit 15							bit 8						
		DANIO	DAMO	DAMA	DAMO								
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1						
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR						
							bit (
Legend:													
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'							
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown						
bit 15	•	TRAPR: Trap Reset Flag bit											
		 A Trap Conflict Reset has occurred A Trap Conflict Reset has not occurred 											
bit 14	•	0 = A Trap Conflict Reset has not occurred IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit											
		1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used as ar											
		Pointer caused											
	-	l opcode or Uni		egister Reset h	as not occurred	d							
bit 13-12	-	ted: Read as '			. 1.9								
bit 11		VREGSF: Flash Voltage Regulator Standby During Sleep bit 1 = Flash voltage regulator is active during Sleep											
		ltage regulator (•	ing Sleep								
bit 10		ted: Read as '	-	,,	5								
bit 9	CM: Configur	CM: Configuration Mismatch Flag bit											
	1 = A Configu	uration Mismatc uration Mismatc	h Reset has										
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit									
	•	egulator is active egulator goes in	•	•	еер								
bit 7	EXTR: Extern	 0 = Voltage regulator goes into Standby mode during Sleep EXTR: External Reset (MCLR) Pin bit 											
		Clear (pin) Res Clear (pin) Res											
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit									
		instruction has instruction has											
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾									
	1 = WDT is e 0 = WDT is di												
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	it									
		e-out has occur e-out has not oc											
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not						
2:	If the FWDTEN Co SWDTEN bit settir	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	lless of the						

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
	—			ILR3	ILR2	ILR1	ILR0					
bit 15							bit 8					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0					
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown						
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits											
	1111 = CPU Interrupt Priority Level is 15											
	•											
	0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0											
bit 7-0	VECNUM<7:0>: Vector Number of Pending Interrupt bits											
	11111111 = 255, Reserved; do not use											
	•											
	•											
	00001000 = 8 00000111 = 7 00000110 = 8 00000101 = 8 00000100 = 7 00000011 = 3	9, IC1 – Input (8, INT0 – Exter 7, Reserved; d 6, Generic soft 5, DMAC error 4, Math error tr 3, Stack error t 2, Generic hard 1, Address erro	rnal Interrupt C o not use error trap trap rap d trap or trap)								

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, WO	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	—
bit 7		•		•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

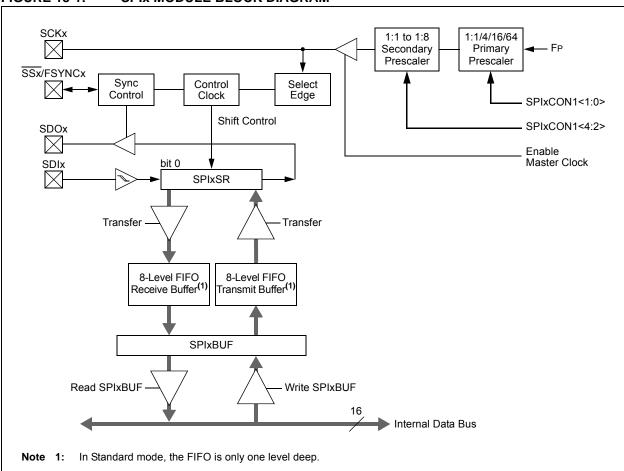
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			IC2R<6:0>				
·						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			IC1R<6:0>				
						bit C	
e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'		
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
•			nbers)				
		1					
Unimplemer	nted: Read as '0						
(see Table 11 1111001 = I	I-2 for input pin's nput tied to RPI1	election num 21		onding RPn Pi	n bits		
	e bit POR Unimplemen IC2R<6:0>: / (see Table 11 1111001 = I 0000001 = I 0000000 = I Unimplemen IC1R<6:0>: / (see Table 11 1111001 = I	e bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 IC2R<6:0>: Assign Input Cap (see Table 11-2 for input pin s 1111001 = Input tied to RPI1 0000001 = Input tied to CMP 0000000 = Input tied to Vss Unimplemented: Read as '0 IC1R<6:0>: Assign Input Cap (see Table 11-2 for input pin s	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) (see Table 11-2 for input pin selection num 1111001 = Input tied to RPI121	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> IC1R<6:0> e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<>	

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7	•						bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
L:1 7	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

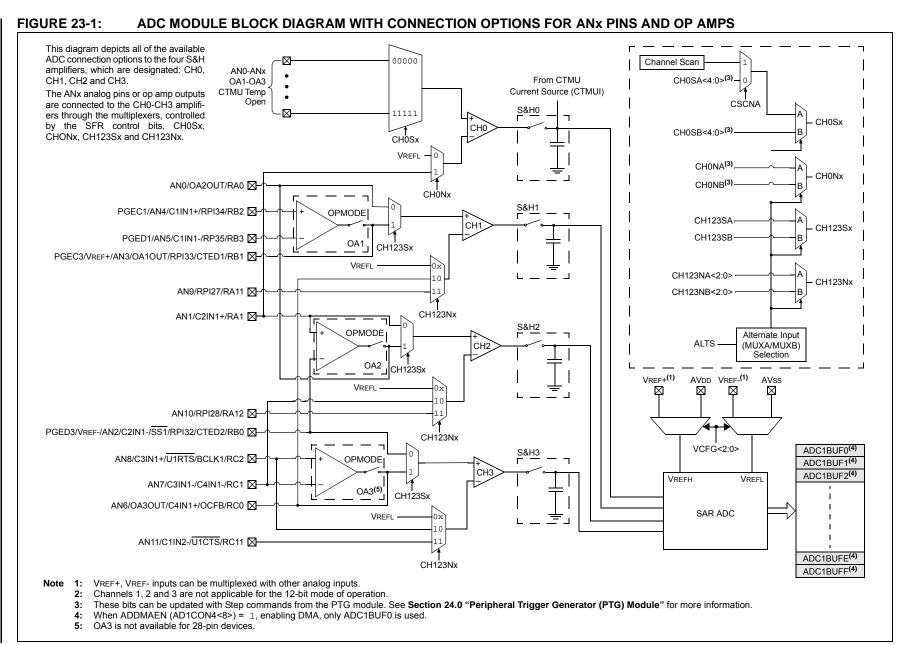
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
_	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0				
bit 15							bit				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
				1		1					
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemer	nted: Read as '	0'								
bit 14		lect CAN Bus L		Vake-up bit							
		N bus line filter line filter is not		e-up							
bit 13-11	Unimplemer	nted: Read as '	0'								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits										
	111 = Length is 8 x TQ										
	•										
	•										
	•										
	000 = Length	n is 1 x Tq									
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit										
	1 = Freely pr 0 = Maximun	-	oits or Informa	tion Processin	g Time (IPT), w	hichever is gre	ater				
bit 6	0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater SAM: Sample of the CAN Bus Line bit										
		is sampled three is sampled once									
bit 5-3	SEG1PH<2:0>: Phase Segment 1 bits										
	111 = Length is 8 x TQ										
	•										
	•										
	•										
	000 = Length										
bit 2-0		>: Propagation	Time Segmen	t bits							
	111 = Length	n is 8 x Tq									
	•										
	•										

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

REGISTER 21-20:	CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
	REGISTER (n = 0-2)

		-	-					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	-	MIDE	_	EID17	EID16	
bit 7							bit C	
<u> </u>								
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknown				
bit 15-5	SID<10:0>: S	Standard Identii	fier bits					
		bit, SIDx, in filte is a don't care i						
bit 4	Unimplemer	nted: Read as '	0'					
bit 3	MIDE: Identif	fier Receive Mo	de bit					
	0 = Matches		or extended a	d or extended ac address messag SID/EID))		•		
bit 2	Unimplemer	nted: Read as '	0'					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
		bit, EIDx, in fill is a don't care						

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)


R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	
bit 15				·			bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	
bit 7						•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0				
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0				
bit 15	·						bit 8				
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	_				
bit 7	•						bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe				
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	CSIDL: CRC	CSIDL: CRC Stop in Idle Mode bit									
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
	VWORD<4:0>: Pointer Value bits										
bit 12-8	VWORD<4:0	>: Pointer Value		oue							
bit 12-8	Indicates the		e bits		naximum value	of 8 when PLE	N<4:0> > 7				
	Indicates the or 16 when P	number of valio	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7				
	Indicates the or 16 when P	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7				
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7				
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7				
bit 7 bit 6	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e 0 = FIFO is r	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty	e bits d words in the : Bit		naximum value	of 8 when PLE	N<4:0> > 7				
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r 0 = FIFO is r CRCISEL: CF	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se	e bits d words in the Bit election bit	FIFO. Has a m			N<4:0> > 7				
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4: $0> \leq 7$. CC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is empty	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7				
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7				
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit pty; final word plete and CR0	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7				
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit	e bits d words in the Bit election bit oty; final word plete and CRC	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7				
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is f 1 = FIFO is f 0 = FIFO is f 0 = FIFO is f CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d bit Bit election bit oty; final word plete and CRC ned off Endian Config	FIFO. Has a m of data is still s CWDAT results	shifting through are ready	CRC	N<4:0> > 7				
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da 1 = Data wor	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little- rd is shifted into	e bits d words in the d bit Bit election bit oty; final word plete and CRC ned off Endian Config the CRC star	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7				
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da 1 = Data wor 0 = Data wor	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d bit Bit election bit oty; final word plete and CRC plete and CRC c hed off Endian Config the CRC star o the CRC star	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7				

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52 MUL	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

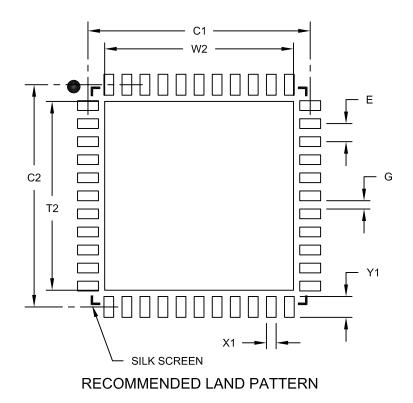
Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	ARACTERIS	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	_	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description				
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .				
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).				
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).				
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).				
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).				
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).				
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).				
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).				
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).				
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).				
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).				
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).				
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.				
"Product Identification System"	Changed VLAP to TLA.				