



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 60 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                      |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                     |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 128KB (43K x 24)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 8K x 16                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 16x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-TQFP                                                                           |
| Supplier Device Package    | 64-TQFP (10x10)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128mc506t-e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Pin Diagrams (Continued)



## 3.7 CPU Control Registers

| R/W-0               | ) R/W-0                                                                | R/W-0                                                                                               | R/W-0                       | R/C-0                    | R/C-0              | R-0               | R/W-0           |  |  |  |
|---------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------|-------------------|-----------------|--|--|--|
| 0A <sup>(1)</sup>   | OB <sup>(1)</sup>                                                      | SA <sup>(1,4)</sup>                                                                                 | SB <sup>(1,4)</sup>         | OAB <sup>(1)</sup>       | SAB <sup>(1)</sup> | DA <sup>(1)</sup> | DC              |  |  |  |
| bit 15              |                                                                        |                                                                                                     |                             |                          |                    |                   | bit 8           |  |  |  |
|                     |                                                                        |                                                                                                     |                             |                          |                    |                   |                 |  |  |  |
| R/W-0 <sup>(2</sup> | R/W-0 <sup>(2,3)</sup>                                                 | R/W-0 <sup>(2,3)</sup>                                                                              | R-0                         | R/W-0                    | R/W-0              | R/W-0             | R/W-0           |  |  |  |
| IPL2                | IPL1                                                                   | IPL0                                                                                                | RA                          | N                        | OV                 | Z                 | С               |  |  |  |
| bit 7               |                                                                        |                                                                                                     |                             |                          |                    |                   | bit 0           |  |  |  |
|                     |                                                                        |                                                                                                     |                             |                          |                    |                   |                 |  |  |  |
| Legend:             |                                                                        | C = Clearable                                                                                       | bit                         |                          |                    |                   |                 |  |  |  |
| R = Reada           | able bit                                                               | W = Writable                                                                                        | bit                         | U = Unimpler             | mented bit, read   | l as '0'          |                 |  |  |  |
| -n = Value          | = Value at POR '1'= Bit is set '0' = Bit is cleared x = Bit is unknown |                                                                                                     |                             |                          |                    |                   |                 |  |  |  |
|                     |                                                                        |                                                                                                     |                             |                          |                    |                   |                 |  |  |  |
| bit 15              | OA: Accumu                                                             | lator A Overflow                                                                                    | v Status bit <sup>(1)</sup> |                          |                    |                   |                 |  |  |  |
|                     | 1 = Accumula                                                           | ator A has over                                                                                     | flowed                      |                          |                    |                   |                 |  |  |  |
|                     | 0 = Accumula                                                           | ator A has not c                                                                                    | verflowed                   |                          |                    |                   |                 |  |  |  |
| bit 14              | OB: Accumu                                                             | lator B Overflov                                                                                    | v Status bit <sup>(1)</sup> |                          |                    |                   |                 |  |  |  |
|                     | 1 = Accumula                                                           | 1 = Accumulator B has overflowed                                                                    |                             |                          |                    |                   |                 |  |  |  |
| hit 13              |                                                                        | 0 = Accumulator B has not overnowed<br><b>SA:</b> Accumulator A Saturation (Sticky) Status bit(1,4) |                             |                          |                    |                   |                 |  |  |  |
| DIL 15              | $1 = \Delta c cumula$                                                  | ator A is saturat                                                                                   | ed or has her               | n saturated at           | some time          |                   |                 |  |  |  |
|                     | 0 = Accumula                                                           | ator A is not sat                                                                                   | urated                      |                          | Some time          |                   |                 |  |  |  |
| bit 12              | SB: Accumu                                                             | lator B Saturatio                                                                                   | on 'Sticky' Sta             | tus bit <sup>(1,4)</sup> |                    |                   |                 |  |  |  |
|                     | 1 = Accumula                                                           | ator B is satura                                                                                    | ed or has bee               | en saturated at          | some time          |                   |                 |  |  |  |
|                     | 0 = Accumula                                                           | ator B is not sat                                                                                   | urated                      |                          |                    |                   |                 |  |  |  |
| bit 11              | <b>OAB:</b> OA    (                                                    | OB Combined A                                                                                       | ccumulator O                | verflow Status           | bit <sup>(1)</sup> |                   |                 |  |  |  |
|                     | 1 = Accumula                                                           | ators A or B have                                                                                   | ve overflowed               |                          |                    |                   |                 |  |  |  |
|                     | 0 = Neither A                                                          | Accumulators A                                                                                      | or B have ove               | erflowed                 | (1)                |                   |                 |  |  |  |
| bit 10              | SAB: SA    S                                                           | B Combined A                                                                                        | cumulator 'Si               | icky Status bit          |                    | <b>1</b>          |                 |  |  |  |
|                     | 1 = Accumula  0 = Neither A                                            | ators A or B are                                                                                    | or B are satur              | nave been sat            | urated at some     | time              |                 |  |  |  |
| hit 9               |                                                                        | Active hit(1)                                                                                       |                             | alou                     |                    |                   |                 |  |  |  |
| bit 0               | 1 = DO loop is                                                         | s in progress                                                                                       |                             |                          |                    |                   |                 |  |  |  |
|                     | 0 = DO loop is                                                         | s not in progres                                                                                    | S                           |                          |                    |                   |                 |  |  |  |
| bit 8               | DC: MCU AL                                                             | U Half Carry/Bo                                                                                     | orrow bit                   |                          |                    |                   |                 |  |  |  |
|                     | 1 = A carry-o                                                          | out from the 4th                                                                                    | low-order bit (             | for byte-sized o         | data) or 8th low-  | order bit (for wo | ord-sized data) |  |  |  |
|                     | of the re                                                              | sult occurred                                                                                       |                             |                          |                    |                   |                 |  |  |  |
|                     | 0 = No carry                                                           | -out from the 4                                                                                     | th low-order t              | bit (for byte-siz        | ed data) or 8th    | low-order bit (1  | for word-sized  |  |  |  |
|                     | uala) U                                                                |                                                                                                     |                             |                          |                    |                   |                 |  |  |  |
| Note 1:             | This bit is availabl                                                   | e on dsPIC33E                                                                                       | PXXXMC20X                   | /50X and dsPl            | C33EPXXXGP         | 50X devices on    | ly.             |  |  |  |
| 2:                  | The IPL<2:0> bits                                                      | are concatenat                                                                                      | ed with the IF              | PL<3> bit (COR           | RCON<3>) to fo     | rm the CPU Inte   | errupt Priority |  |  |  |
|                     | Level. The value I<br>IPL< $3 > = 1$ .                                 | n parentheses i                                                                                     | naicates the I              | PL, IT IPL<3> =          | = ⊥. User interru  | ipts are disable  | a wnen          |  |  |  |

#### REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

# 4.4 Special Function Register Maps

# TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

| File Name | Addr. | Bit 15       | Bit 14 | Bit 13 | Bit 12      | Bit 11     | Bit 10 | Bit 9 | Bit 8      | Bit 7 | Bit 6 | Bit 5  | Bit 4   | Bit 3    | Bit 2    | Bit 1 | Bit 0 | All<br>Resets |
|-----------|-------|--------------|--------|--------|-------------|------------|--------|-------|------------|-------|-------|--------|---------|----------|----------|-------|-------|---------------|
| W0        | 0000  |              |        |        |             |            |        |       | W0 (WR     | EG)   |       |        |         |          |          |       |       | xxxx          |
| W1        | 0002  |              |        |        |             |            |        |       | W1         |       |       |        |         |          |          |       |       | xxxx          |
| W2        | 0004  |              |        |        |             |            |        |       | W2         |       |       |        |         |          |          |       |       | xxxx          |
| W3        | 0006  |              |        |        |             |            |        |       | W3         |       |       |        |         |          |          |       |       | xxxx          |
| W4        | 8000  |              | W4     |        |             |            |        |       |            |       |       | xxxx   |         |          |          |       |       |               |
| W5        | 000A  |              |        |        |             |            |        |       | W5         |       |       |        |         |          |          |       |       | xxxx          |
| W6        | 000C  |              |        |        |             |            |        |       | W6         |       |       |        |         |          |          |       |       | xxxx          |
| W7        | 000E  |              |        |        |             |            |        |       | W7         |       |       |        |         |          |          |       |       | xxxx          |
| W8        | 0010  |              |        |        |             |            |        |       | W8         |       |       |        |         |          |          |       |       | xxxx          |
| W9        | 0012  |              |        |        |             |            |        |       | W9         |       |       |        |         |          |          |       |       | xxxx          |
| W10       | 0014  |              |        |        |             |            |        |       | W10        |       |       |        |         |          |          |       |       | xxxx          |
| W11       | 0016  |              |        |        |             |            |        |       | W11        |       |       |        |         |          |          |       |       | xxxx          |
| W12       | 0018  |              |        |        |             |            |        |       | W12        |       |       |        |         |          |          |       |       | xxxx          |
| W13       | 001A  |              |        |        |             |            |        |       | W13        |       |       |        |         |          |          |       |       | xxxx          |
| W14       | 001C  |              |        |        |             |            |        |       | W14        |       |       |        |         |          |          |       |       | xxxx          |
| W15       | 001E  |              |        |        |             |            |        |       | W15        |       |       |        |         |          |          |       |       | xxxx          |
| SPLIM     | 0020  |              |        |        |             |            |        |       | SPLI       | Л     |       |        |         |          |          |       |       | 0000          |
| ACCAL     | 0022  |              |        |        |             |            |        |       | ACCA       | L     |       |        |         |          |          |       |       | 0000          |
| ACCAH     | 0024  |              |        |        |             |            |        |       | ACCA       | н     |       |        |         |          |          |       |       | 0000          |
| ACCAU     | 0026  |              |        | Się    | gn Extensio | n of ACCA< | 39>    |       |            |       |       |        | AC      | CAU      |          |       |       | 0000          |
| ACCBL     | 0028  |              |        |        |             |            |        |       | ACCB       | L     |       |        |         |          |          |       |       | 0000          |
| ACCBH     | 002A  |              |        |        |             |            |        |       | ACCB       | н     |       |        |         |          |          |       |       | 0000          |
| ACCBU     | 002C  |              |        | Się    | gn Extensio | n of ACCB< | 39>    |       |            |       |       |        | AC      | CBU      |          |       |       | 0000          |
| PCL       | 002E  |              |        |        |             |            |        | P     | CL<15:0>   |       |       |        |         |          |          |       | —     | 0000          |
| PCH       | 0030  | _            | —      | —      | —           | _          | -      | —     | —          | —     |       |        |         | PCH<6:0> |          |       |       | 0000          |
| DSRPAG    | 0032  | _            | —      | —      | —           | _          | -      |       |            |       |       | DSRPAC | G<9:0>  |          |          |       |       | 0001          |
| DSWPAG    | 0034  | _            | —      | —      | —           | _          | -      | —     |            |       |       | DS     | WPAG<8: | 0>       |          |       |       | 0001          |
| RCOUNT    | 0036  | RCOUNT<15:0> |        |        |             |            |        |       |            | 0000  |       |        |         |          |          |       |       |               |
| DCOUNT    | 0038  | DCOUNT<15:0> |        |        |             |            |        |       | 0000       |       |       |        |         |          |          |       |       |               |
| DOSTARTL  | 003A  |              |        |        |             |            |        | DOS   | TARTL<15:1 | >     |       |        |         |          |          |       | —     | 0000          |
| DOSTARTH  | 003C  | _            | _      | —      | _           | —          | _      | _     | _          | _     | —     |        |         | DOSTAF   | RTH<5:0> |       |       | 0000          |
| DOENDL    | 003E  |              |        |        |             |            |        | DO    | ENDL<15:1> | >     |       |        |         |          |          |       | _     | 0000          |
| DOENDH    | 0040  | _            | _      | —      | —           | _          | _      | _     | —          | _     | _     |        |         | DOEND    | )H<5:0>  |       |       | 0000          |

**Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| IADLE 4-2  | BLE 4-23. ECANT REGISTER WAP WHEN WIN (CICTREI <0>) |        |           |        |        |        | $y = \perp r c$ |       | SSELV |                          | POUX D                      | EVICES | UNLT  | CONTI | NUED) |       |       |               |
|------------|-----------------------------------------------------|--------|-----------|--------|--------|--------|-----------------|-------|-------|--------------------------|-----------------------------|--------|-------|-------|-------|-------|-------|---------------|
| File Name  | Addr                                                | Bit 15 | Bit 14    | Bit 13 | Bit 12 | Bit 11 | Bit 10          | Bit 9 | Bit 8 | Bit 7                    | Bit 6                       | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
| C1RXF11EID | 046E                                                |        | EID<15:8> |        |        |        |                 |       |       | EID<7:0>                 |                             |        |       |       |       |       |       | xxxx          |
| C1RXF12SID | 0470                                                |        | SID<10:3> |        |        |        |                 |       |       |                          | SID<2:0> — EXIDE — EID<17:1 |        |       |       |       | 7:16> | xxxx  |               |
| C1RXF12EID | 0472                                                |        | EID<15:8> |        |        |        |                 |       |       | EID<7:0>                 |                             |        |       |       |       |       | xxxx  |               |
| C1RXF13SID | 0474                                                |        | SID<10:3> |        |        |        |                 |       |       |                          | SID<2:0>                    |        | _     | EXIDE | _     | EID<1 | 7:16> | xxxx          |
| C1RXF13EID | 0476                                                |        |           |        | EID<   | <15:8> |                 |       |       | EID<7:0>                 |                             |        |       |       |       | xxxx  |       |               |
| C1RXF14SID | 0478                                                |        |           |        | SID<   | <10:3> |                 |       |       | SID<2:0> — EXIDE — EID<  |                             |        |       |       | 7:16> | xxxx  |       |               |
| C1RXF14EID | 047A                                                |        | EID<15:8> |        |        |        |                 |       |       | EID<7:0>                 |                             |        |       |       |       |       | xxxx  |               |
| C1RXF15SID | 047C                                                |        | SID<10:3> |        |        |        |                 |       |       | SID<2:0> — EXIDE — EID<1 |                             |        |       |       | 7:16> | xxxx  |       |               |
| C1RXF15EID | 047E                                                |        | EID<15:8> |        |        |        |                 |       |       |                          |                             |        | EID<  | 7:0>  |       |       |       | xxxx          |

#### ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) 1 22.

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|---------------|
| TRISG        | 0E60  |        |        | —      | —      | —      | —      | TRISG9 | TRISG8 | TRISG7 | TRISG6 |       |       |       | —     | —     |       | 03C0          |
| PORTG        | 0E62  | _      | _      | _      | _      | _      | _      | RG9    | RG8    | RG7    | RG6    | _     | _     | _     | _     | _     | _     | xxxx          |
| LATG         | 0E64  | _      | _      | _      | _      | _      | _      | LATG9  | LATG8  | LATG7  | LATG6  | _     | _     | _     | _     | _     | _     | xxxx          |
| ODCG         | 0E66  |        |        | —      | —      | —      | —      | ODCG9  | ODCG8  | ODCG7  | ODCG6  |       |       |       | —     | —     |       | 0000          |
| CNENG        | 0E68  | _      | _      | _      | _      | _      | _      | CNIEG9 | CNIEG8 | CNIEG7 | CNIEG6 | _     | _     | _     | _     | _     | _     | 0000          |
| CNPUG        | 0E6A  | _      | _      | _      | _      | _      | _      | CNPUG9 | CNPUG8 | CNPUG7 | CNPUG6 | _     | _     | _     | _     | _     | _     | 0000          |
| CNPDG        | 0E6C  | _      | _      | _      | _      | _      | _      | CNPDG9 | CNPDG8 | CNPDG7 | CNPDG6 | _     | _     |       | —     | —     | _     | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# 7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

## 7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

# 7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

# **REGISTER 8-7:** DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER<sup>(1)</sup>

| R/W-0                                                   | R/W-0 | R/W-0          | R/W-0 | R/W-0        | R/W-0           | R/W-0    | R/W-0 |
|---------------------------------------------------------|-------|----------------|-------|--------------|-----------------|----------|-------|
|                                                         |       |                | PAD   | <15:8>       |                 |          |       |
| bit 15                                                  |       |                |       |              |                 |          | bit 8 |
|                                                         |       |                |       |              |                 |          |       |
| R/W-0                                                   | R/W-0 | R/W-0          | R/W-0 | R/W-0        | R/W-0           | R/W-0    | R/W-0 |
|                                                         |       |                | PAD   | )<7:0>       |                 |          |       |
| bit 7                                                   |       |                |       |              |                 |          | bit 0 |
|                                                         |       |                |       |              |                 |          |       |
| Legend:                                                 |       |                |       |              |                 |          |       |
| R = Readable                                            | bit   | W = Writable b | oit   | U = Unimpler | nented bit, rea | d as '0' |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared |       |                |       | ared         | x = Bit is unkr | nown     |       |

#### bit 15-0 PAD<15:0>: Peripheral Address Register bits

**Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

## REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER<sup>(1)</sup>

| U-0             | U-0   | R/W-0            | R/W-0 | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|-----------------|-------|------------------|-------|------------------|------------------|-----------------|-------|
|                 | _     |                  |       | CNT<             | 13:8> <b>(2)</b> |                 |       |
| bit 15          |       |                  |       |                  |                  |                 | bit 8 |
|                 |       |                  |       |                  |                  |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|                 |       |                  | CNT≪  | <7:0> <b>(2)</b> |                  |                 |       |
| bit 7           |       |                  |       |                  |                  |                 | bit 0 |
|                 |       |                  |       |                  |                  |                 |       |
| Legend:         |       |                  |       |                  |                  |                 |       |
| R = Readable b  | oit   | W = Writable b   | oit   | U = Unimpler     | nented bit, read | d as '0'        |       |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cle | ared             | x = Bit is unkr | nown  |

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits<sup>(2)</sup>

**Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

**2:** The number of DMA transfers = CNT<13:0> + 1.

| Peripheral Pin<br>Select Input<br>Register Value | Input/<br>Output | Pin Assignment | Peripheral Pin<br>Select Input<br>Register Value | Input/<br>Output | Pin Assignment |
|--------------------------------------------------|------------------|----------------|--------------------------------------------------|------------------|----------------|
| 010 1000                                         | I/O              | RP40           | 101 0101                                         | —                |                |
| 010 1001                                         | I/O              | RP41           | 101 0110                                         | —                | —              |
| 010 1010                                         | I/O              | RP42           | 101 0111                                         |                  | —              |
| 010 1011                                         | I/O              | RP43           | 101 1000                                         |                  | —              |
| 010 1100                                         | I                | RPI44          | 101 1001                                         | —                | —              |
| 101 1010                                         | —                | —              | 110 1101                                         |                  | —              |
| 101 1011                                         |                  |                | 110 1110                                         |                  | —              |
| 101 1100                                         | _                |                | 110 1111                                         |                  | —              |
| 101 1101                                         | —                | —              | 111 0000                                         |                  | —              |
| 101 1110                                         | Ι                | RPI94          | 111 0001                                         |                  | —              |
| 101 1111                                         | Ι                | RPI95          | 111 0010                                         | —                | —              |
| 110 0000                                         | I                | RPI96          | 111 0011                                         | _                | —              |
| 110 0001                                         | I/O              | RP97           | 111 0100                                         | —                | —              |
| 110 0010                                         | —                | —              | 111 0101                                         | —                | —              |
| 110 0011                                         | _                |                | 111 0110                                         | I/O              | RP118          |
| 110 0100                                         | —                | —              | 111 0111                                         | Ι                | RPI119         |
| 110 0101                                         |                  | _              | 111 1000                                         | I/O              | RP120          |
| 110 0110                                         |                  | _              | 111 1001                                         | I                | RPI121         |
| 110 0111                                         | _                | _              | 111 1010                                         | —                | _              |
| 110 1000                                         | —                |                | 111 1011                                         | —                | <u> </u>       |
| 110 1001                                         | _                | _              | 111 1100                                         |                  | _              |
| 110 1010                                         | —                | _              | 111 1101                                         | —                | —              |
| 110 1011                                         | —                |                | 111 1110                                         | —                | <u> </u>       |
| 110 1100                                         | —                |                | 111 1111                                         | —                | _              |

## TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

# 12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

| Mode                    | TCS | TGATE | TSYNC |
|-------------------------|-----|-------|-------|
| Timer                   | 0   | 0     | x     |
| Gated Timer             | 0   | 1     | х     |
| Synchronous<br>Counter  | 1   | x     | 1     |
| Asynchronous<br>Counter | 1   | x     | 0     |

#### TABLE 12-1: TIMER MODE SETTINGS

## FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM



# 13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

### REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

| bit 6-4 | SYNCSRC<2:0>: Synchronous Source Selection bits <sup>(1)</sup><br>111 = Reserved                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | •                                                                                                                                                                                                  |
|         | •<br>100 = Reserved<br>011 = PTGO17 <sup>(2)</sup><br>010 = PTGO16 <sup>(2)</sup><br>001 = Reserved<br>000 = SYNCI1 input from PPS                                                                 |
| bit 3-0 | <pre>SEVTPS&lt;3:0&gt;: PWMx Special Event Trigger Output Postscaler Select bits<sup>(1)</sup> 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event</pre> |
|         | 0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event<br>0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event                    |

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
  - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

#### REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
  - 1 = Transmit not yet started, SPIxTXB is full
  - 0 = Transmit started, SPIxTXB is empty

#### Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

## Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

#### bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

#### Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

#### Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

# 22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|-----------------|-------|------------------|-------|------------------|------------------|-----------------|-------|
| CSS15           | CSS14 | CSS13            | CSS12 | CSS11            | CSS10            | CSS9            | CSS8  |
| bit 15          |       |                  |       |                  |                  |                 | bit 8 |
|                 |       |                  |       |                  |                  |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
| CSS7            | CSS6  | CSS5             | CSS4  | CSS3             | CSS2             | CSS1            | CSS0  |
| bit 7           | ·     |                  |       |                  |                  |                 | bit 0 |
|                 |       |                  |       |                  |                  |                 |       |
| Legend:         |       |                  |       |                  |                  |                 |       |
| R = Readable    | bit   | W = Writable b   | oit   | U = Unimplei     | mented bit, read | d as '0'        |       |
| -n = Value at F | POR   | '1' = Bit is set |       | '0' = Bit is cle | ared             | x = Bit is unkr | nown  |

# REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW<sup>(1,2)</sup>

bit 15-0 CSS<15:0>: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

**Note 1:** On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.

**2:** CSSx = ANx, where x = 0-15.

# **REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER**<sup>(1,2)</sup> (CONTINUED)

| bit 4 | OC1CS: Clock Source for OC1 bit                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>1 = Generates clock pulse when the broadcast command is executed</li> <li>0 = Does not generate clock pulse when the broadcast command is executed</li> </ul>                         |
| bit 3 | OC4TSS: Trigger/Synchronization Source for OC4 bit                                                                                                                                             |
|       | <ul> <li>1 = Generates Trigger/Synchronization when the broadcast command is executed</li> <li>0 = Does not generate Trigger/Synchronization when the broadcast command is executed</li> </ul> |
| bit 2 | OC3TSS: Trigger/Synchronization Source for OC3 bit                                                                                                                                             |
|       | <ul> <li>1 = Generates Trigger/Synchronization when the broadcast command is executed</li> <li>0 = Does not generate Trigger/Synchronization when the broadcast command is executed</li> </ul> |
| bit 1 | OC2TSS: Trigger/Synchronization Source for OC2 bit                                                                                                                                             |
|       | <ul> <li>1 = Generates Trigger/Synchronization when the broadcast command is executed</li> <li>0 = Does not generate Trigger/Synchronization when the broadcast command is executed</li> </ul> |
| bit 0 | OC1TSS: Trigger/Synchronization Source for OC1 bit                                                                                                                                             |
|       | <ul> <li>1 = Generates Trigger/Synchronization when the broadcast command is executed</li> <li>0 = Does not generate Trigger/Synchronization when the broadcast command is executed</li> </ul> |
|       |                                                                                                                                                                                                |

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
  - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

| Bit Field             | Description                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WDTPRE                | Watchdog Timer Prescaler bit<br>1 = 1:128<br>0 = 1:32                                                                                                                                         |
| WDTPOST<3:0>          | Watchdog Timer Postscaler bits<br>1111 = 1:32,768<br>1110 = 1:16,384<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                         |
| WDTWIN<1:0>           | Watchdog Window Select bits<br>11 = WDT window is 25% of WDT period<br>10 = WDT window is 37.5% of WDT period<br>01 = WDT window is 50% of WDT period<br>00 = WDT window is 75% of WDT period |
| ALTI2C1               | Alternate I2C1 pin<br>1 = I2C1 is mapped to the SDA1/SCL1 pins<br>0 = I2C1 is mapped to the ASDA1/ASCL1 pins                                                                                  |
| ALTI2C2               | Alternate I2C2 pin<br>1 = I2C2 is mapped to the SDA2/SCL2 pins<br>0 = I2C2 is mapped to the ASDA2/ASCL2 pins                                                                                  |
| JTAGEN <sup>(2)</sup> | JTAG Enable bit<br>1 = JTAG is enabled<br>0 = JTAG is disabled                                                                                                                                |
| ICS<1:0>              | ICD Communication Channel Select bits<br>11 = Communicate on PGEC1 and PGED1<br>10 = Communicate on PGEC2 and PGED2<br>01 = Communicate on PGEC3 and PGED3<br>00 = Reserved, do not use       |

## TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

| DC CHARACTERISTICS                                                                                        |                                | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                 |                       |                  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|------------------|--|--|
| Parameter Typ. Max.                                                                                       |                                |                                                                                                                                                                                                      | Units           | Conditions            |                  |  |  |
| Power-Down                                                                                                | Current (IPD) <sup>(1)</sup> - | dsPIC33EP32GI                                                                                                                                                                                        | P50X, dsPIC33EF | P32MC20X/50X and PIC2 | 24EP32GP/MC20X   |  |  |
| DC60d                                                                                                     | 30                             | 100                                                                                                                                                                                                  | μA              | -40°C                 |                  |  |  |
| DC60a                                                                                                     | 35                             | 100                                                                                                                                                                                                  | μA              | +25°C                 | 3.3\/            |  |  |
| DC60b                                                                                                     | 150                            | 200                                                                                                                                                                                                  | μA              | +85°C                 | - 3.3V           |  |  |
| DC60c                                                                                                     | 250                            | 500                                                                                                                                                                                                  | μA              | +125°C                |                  |  |  |
| Power-Down                                                                                                | Current (IPD) <sup>(1)</sup> - | dsPIC33EP64GI                                                                                                                                                                                        | P50X, dsPIC33EI | P64MC20X/50X and PIC2 | 24EP64GP/MC20X   |  |  |
| DC60d                                                                                                     | 25                             | 100                                                                                                                                                                                                  | μA              | -40°C                 |                  |  |  |
| DC60a                                                                                                     | 30                             | 100                                                                                                                                                                                                  | μA              | +25°C                 | 2.2\/            |  |  |
| DC60b                                                                                                     | 150                            | 350                                                                                                                                                                                                  | μA              | +85°C                 | - 3.3V<br>-      |  |  |
| DC60c                                                                                                     | 350                            | 800                                                                                                                                                                                                  | μA              | +125°C                |                  |  |  |
| Power-Down                                                                                                | Current (IPD) <sup>(1)</sup> – | dsPIC33EP128G                                                                                                                                                                                        | P50X, dsPIC33E  | P128MC20X/50X and PI  | C24EP128GP/MC20X |  |  |
| DC60d                                                                                                     | 30                             | 100                                                                                                                                                                                                  | μA              | -40°C                 |                  |  |  |
| DC60a                                                                                                     | 35                             | 100                                                                                                                                                                                                  | μA              | +25°C                 | 3.3V             |  |  |
| DC60b                                                                                                     | 150                            | 350                                                                                                                                                                                                  | μA              | +85°C                 |                  |  |  |
| DC60c                                                                                                     | 550                            | 1000                                                                                                                                                                                                 | μA              | +125°C                |                  |  |  |
| Power-Down                                                                                                | Current (IPD) <sup>(1)</sup> – | dsPIC33EP256G                                                                                                                                                                                        | P50X, dsPIC33E  | P256MC20X/50X and PIC | C24EP256GP/MC20X |  |  |
| DC60d                                                                                                     | 35                             | 100                                                                                                                                                                                                  | μA              | -40°C                 |                  |  |  |
| DC60a                                                                                                     | 40                             | 100                                                                                                                                                                                                  | μA              | +25°C                 | 3 3//            |  |  |
| DC60b                                                                                                     | 250                            | 450                                                                                                                                                                                                  | μA              | +85°C                 | - 3.3V<br>-      |  |  |
| DC60c                                                                                                     | 1000                           | 1200                                                                                                                                                                                                 | μA              | +125°C                |                  |  |  |
| Power-Down Current (IPD) <sup>(1)</sup> – dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X and PIC24EP512GP/MC20X |                                |                                                                                                                                                                                                      |                 |                       |                  |  |  |
| DC60d                                                                                                     | 40                             | 100                                                                                                                                                                                                  | μA              | -40°C                 | 3.3V             |  |  |
| DC60a                                                                                                     | 45                             | 100                                                                                                                                                                                                  | μA              | +25°C                 |                  |  |  |
| DC60b                                                                                                     | 350                            | 800                                                                                                                                                                                                  | μA              | +85°C                 |                  |  |  |
| DC60c                                                                                                     | 1100                           | 1500                                                                                                                                                                                                 | μA              | +125°C                |                  |  |  |

## TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

| DC CHARACTERISTICS  |        | $\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |       |      |       |                                   |
|---------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|-------|-----------------------------------|
| Param<br>No.        | Symbol | Characteristic                                                                                                                                                                                                                                                                   | Min. | Тур.  | Max. | Units | Conditions                        |
| CTMU Current Source |        |                                                                                                                                                                                                                                                                                  |      |       |      |       |                                   |
| CTMUI1              | IOUT1  | Base Range <sup>(1)</sup>                                                                                                                                                                                                                                                        | 0.29 | _     | 0.77 | μA    | CTMUICON<9:8> = 01                |
| CTMUI2              | IOUT2  | 10x Range <sup>(1)</sup>                                                                                                                                                                                                                                                         | 3.85 | —     | 7.7  | μA    | CTMUICON<9:8> = 10                |
| CTMUI3              | IOUT3  | 100x Range <sup>(1)</sup>                                                                                                                                                                                                                                                        | 38.5 | —     | 77   | μA    | CTMUICON<9:8> = 11                |
| CTMUI4              | IOUT4  | 1000x Range <sup>(1)</sup>                                                                                                                                                                                                                                                       | 385  | —     | 770  | μA    | CTMUICON<9:8> = 00                |
| CTMUFV1             | VF     | Temperature Diode Forward Voltage <sup>(1,2)</sup>                                                                                                                                                                                                                               | _    | 0.598 |      | V     | TA = +25°C,<br>CTMUICON<9:8> = 01 |
|                     |        |                                                                                                                                                                                                                                                                                  | -    | 0.658 |      | V     | TA = +25°C,<br>CTMUICON<9:8> = 10 |
|                     |        |                                                                                                                                                                                                                                                                                  | -    | 0.721 |      | V     | TA = +25°C,<br>CTMUICON<9:8> = 11 |
| CTMUFV2 VFVR        | VFVR   | /R Temperature Diode Rate of Change <sup>(1,2,3)</sup>                                                                                                                                                                                                                           | _    | -1.92 | _    | mV/ºC | CTMUICON<9:8> = 01                |
|                     |        |                                                                                                                                                                                                                                                                                  | _    | -1.74 | _    | mV/ºC | CTMUICON<9:8> = 10                |
|                     |        |                                                                                                                                                                                                                                                                                  | _    | -1.56 | _    | mV/ºC | CTMUICON<9:8> = 11                |

## TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

**3:** Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

## 33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)



Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)



Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)



Example



© 2011-2013 Microchip Technology Inc.

## 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units            |           | MILLIMETERS |      |  |  |
|--------------------------|------------------|-----------|-------------|------|--|--|
|                          | Dimension Limits | MIN       | NOM         | MAX  |  |  |
| Number of Leads          | N                | 44        |             |      |  |  |
| Lead Pitch               | e                | 0.80 BSC  |             |      |  |  |
| Overall Height           | А                | – – 1.20  |             |      |  |  |
| Molded Package Thickness | A2               | 0.95      | 1.00        | 1.05 |  |  |
| Standoff                 | A1               | 0.05      | -           | 0.15 |  |  |
| Foot Length              | L                | 0.45      | 0.60        | 0.75 |  |  |
| Footprint                | L1               | 1.00 REF  |             |      |  |  |
| Foot Angle               | ф                | 0°        | 3.5°        | 7°   |  |  |
| Overall Width            | E                | 12.00 BSC |             |      |  |  |
| Overall Length           | D                | 12.00 BSC |             |      |  |  |
| Molded Package Width     | E1               | 10.00 BSC |             |      |  |  |
| Molded Package Length    | D1               | 10.00 BSC |             |      |  |  |
| Lead Thickness           | С                | 0.09      | -           | 0.20 |  |  |
| Lead Width               | b                | 0.30      | 0.37        | 0.45 |  |  |
| Mold Draft Angle Top     | α                | 11°       | 12°         | 13°  |  |  |
| Mold Draft Angle Bottom  | β                | 11°       | 12°         | 13°  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B