

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp502-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC		
bit 15							bit 8		
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2	IPL1	IPL0	RA	N	OV	Z	С		
bit 7							bit 0		
Legend:		C = Clearable	bit						
R = Reada	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾						
	1 = Accumula	ator A has over	flowed						
	0 = Accumula	ator A has not c	verflowed						
bit 14	oit 14 OB: Accumulator B Overflow Status bit ⁽¹⁾								
	1 = Accumula	ator B has over	flowed						
hit 13		SA: Accumulator A Saturation 'Sticky' Status bit ^(1,4)							
DIL 15	$1 = \Delta c cumula$	1 = Accumulator A is saturated or has been saturated at some time							
	0 = Accumula	ator A is not sat	urated		Some time				
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)					
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time				
	0 = Accumula	ator B is not sat	urated						
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾				
	1 = Accumula	ators A or B have	ve overflowed						
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)				
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1			
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time			
hit 9		Active hit(1)		alou					
bit 0	1 = DO loop is	s in progress							
	0 = DO loop is	s not in progres	S						
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit						
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)		
	of the re	sult occurred							
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized		
	uala) U								
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.		
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority		
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen		

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	ansmit and F	Receive Buf	fer Registe	r						0000
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0)>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—		DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268	68 SPI2 Transmit and Receive Buffer Register 00								0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

				(,							
R/SO-0 ⁽¹	⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0				
WR	WREN	WRERR	NVMSIDL ⁽²⁾			—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
	—	—	<u> </u>	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)				
bit 7							bit 0				
						_					
Legend:		SO = Settab	le Only bit								
R = Reada	ble bit	W = Writable	e bit	U = Unimplemented bit, read as '0'							
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ired	x = Bit is unkn	iown				
bit 15	 bit 15 WR: Write Control bit⁽¹⁾ 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete 0 = Program or erase operation is complete and inactive 										
bit 14	WREN: Write Enable bit ⁽¹⁾ 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations										
bit 13	 bit 13 WRERR: Write Sequence Error Flag bit⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally. 										
bit 12	NVMSIDL: N\ 1 = Flash volt 0 = Flash volt	/M Stop in Idl age regulator age regulator	e Control bit ⁽²⁾ goes into Star is active durin	ndby mode duri g Idle mode	ng Idle mode						
bit 11-4	Unimplement	ted: Read as	'0'	-							
bit 11-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,3,4) 1111 = Reserved 1100 = Reserved 1101 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 0011 = Memory page erase operation 0010 = Reserved 0011 = Memory double-word program operation ⁽⁵⁾ 0000 = Reserved											
Note 1: 2: 3: 4: 5:	These bits can only If this bit is set, the (TVREG) before Fla All other combination Execution of the PV Two adjacent word	/ be reset on a re will be mini sh memory be ons of NVMO wrsav instruc s on a 4-word	a POR. mal power sav ecomes operat P<3:0> are uni tion is ignored I boundary are	rings (IIDLE) and ional. implemented. while any of the programmed d	d upon exiting lo e NVM operatio uring execution	the mode, there ns are in progra	is a delay ess. on.				

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

		11.0	11.0		11.0					
		0-0	0-0	VREGSE	0-0		VREGS			
hit 15		—		VNEGSF	—	Civi	bit 8			
bit 10							Dit 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR			
bit 7						.1	bit 0			
Legend:										
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	TRAPR: Trap	Reset Flag bit								
	$1 = A \operatorname{Trap} Co$	onflict Reset ha	s occurred	d						
hit 11			s not occurre		ot Elog bit					
DIL 14	1 = An illega	l oncode deter	viinniiaiizeu	v Access Res	et Flay Dit ode or Uninitial	lized W registe	er used as an			
	Address	Pointer caused	a Reset			ized w regiote				
	0 = An illegal opcode or Uninitialized W register Reset has not occurred									
bit 13-12	Unimplemen	Unimplemented: Read as '0'								
bit 11	VREGSF: Fla	VREGSF: Flash Voltage Regulator Standby During Sleep bit								
	1 = Flash vol	1 = Flash voltage regulator is active during Sleep								
bit 10		tage regulator (naby mode dui	ing Sleep					
bit Q	CM: Configur	ation Mismatch	, Elac bit							
bit 5	1 = A Configur	ration Mismatch	h Reset has	occurred						
	0 = A Configu	ration Mismatc	h Reset has	not occurred						
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit						
	1 = Voltage r	egulator is activ	e during Sle	ер						
	0 = Voltage r	egulator goes in	nto Standby i	mode during SI	еер					
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit							
	\perp = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not or	rea ccurred						
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit						
	1 = A reset	instruction has	been execut	ed						
	0 = A RESET	instruction has	not been exe	ecuted						
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾						
	1 = WDT is er	nabled								
bit 4		ISADIEU hdog Timor Tim	o out Elog b	:+						
DIL 4	1 = WDT time		e-oul Flay D	IL						
	0 = WDT time	e-out has not oc	curred							
Note 1.	All of the Peset sta	itus hits can bo	set or cleare	d in software S	Setting one of th	ese hits in soft	vara does not			
	cause a device Re	set.								
2:	If the FWDTEN Co SWDTEN bit settin	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	less of the			

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾		
bit 15							bit 8		
r									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
[
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown		
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit						
	\perp = Interrupt	nesting is disa	ibled						
bit 14	OVAFRR: A	ccumulator A (Overflow Trap F	lag bit(1)					
2	1 = Trap was	s caused by ov	erflow of Accur	nulator A					
	0 = Trap was	s not caused b	y overflow of A	ccumulator A					
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit ⁽¹⁾								
	1 = Trap was caused by overflow of Accumulator B								
	0 = Irap was not caused by overflow of Accumulator B								
bit 12	COVAERR:	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit("							
	 1 = Irap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A 								
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap Fl	ag bit ⁽¹⁾				
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B				
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	mulator B				
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit ⁽¹⁾					
	1 = Trap ove	rflow of Accun	nulator A						
hit 0			orflow Tran En	able bit(1)					
DIL 9	1 = Tran ove	rflow of Accun	nulator B						
	0 = Trap is d	isabled							
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enat	ole bit ⁽¹⁾					
	1 = Trap on o	catastrophic ov	erflow of Accu	mulator A or B is	s enabled				
	0 = Trap is d	isabled							
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit ⁽¹⁾					
	1 = Math erro	or trap was ca or trap was po	used by an inva t caused by an	alid accumulator	shift ator shift				
bit 6		ivide-hv-Zero	Error Status bit						
bit o	1 = Math erro	or trap was ca	used by a divide	e-bv-zero					
	0 = Math erro	or trap was no	t caused by a d	ivide-by-zero					
bit 5	DMACERR:	DMAC Trap F	lag bit						
	1 = DMAC tr	ap has occurre	ed						
	0 = DMAC tr	ap has not occ	curred						
Note 1: The	ese bits are ava	ailable on dsPl	C33EPXXXMC	20X/50X and de	PIC33EPXXX	GP50X devices	s only.		

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM

In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER MODULE

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				QEB1R<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				QEA1R<6:0>	•		
bit 7							bit 0
Legend:	-1:+		L 14				
R = Readad		vv = vvritable	DIT		nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplome	ntod: Dood os '	o'				
		nteu: Reau as			- Dia kita		
DIL 14-8	(see Table 1	J>: Assign B (QE 11-2 for input pin	selection nur	nbers)	n Pin dits		
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	QEA1R<6:0	D>: Assign A (QE	A) to the Cor	responding RP	n Pin bits		
	(see Table 1	11-2 for input pin	selection nur	nbers)			
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP39F	२<5:0>		
bit 15	•						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP38F	२<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP39R<5:0>	: Peripheral Ou	Itput Function	n is Assigned to I	RP39 Output I	⊃in bits	

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RP40	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

r			
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBP<5:0>: F	IFO Buffer Poir	nter bits				
	011111 = RE	331 buffer					
	•	50 bullet					
	•						
	•						
	000001 = TR	B1 buffer					
	000000 = TR	RB0 buffer					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	ter bits			
	011111 = RE	331 buffer					
	011110 = RE	330 buffer					
	•						
	•						
	•						
	000001 = TR	(B1 buffer					
	$000000 = \mathbf{IR}$						

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0
bit 15			•	•			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplemen	nted: Read as '	0'				
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit			
	1 = Uses CAI	N bus line filter	for wake-up	a-un			
bit 13-11		ted. Pead as '		e-up			
bit 10-8	SEG2PH-2.0		u nent 2 hits				
511 10-0	111 = 1 enoth	is 8 x To					
	•						
	•						
	•						
	000 = Length	n is 1 x Tq					
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ect bit			
	1 = Freely pro	ogrammable					-4
hit C		1 OF SEGIPHX	Dits or informa	ation Processin	g Time (IPT), w	nicnever is gre	eater
DIL 6	J = Rus lino i	e of the CAN B	us Line bit a timos at tha	complo point			
	0 = Bus line i	s sampled once	e at the sampl	e point			
bit 5-3	SEG1PH<2:0)>: Phase Segr	nent 1 bits	•			
	111 = Length	n is 8 x Tq					
	•						
	•						
	•						
	000 = Length	n is 1 x Tq					
bit 2-0	PRSEG<2:0>	>: Propagation	Time Segmen	t bits			
	111 = Length	n is 8 x TQ					
	•						
	•						
	-						

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15B	P<3:0>			F14B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	F13B	P<3:0>			F12B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared x = Bit is		nown
L							
bit 15-12	F15BP<3:0	>: RX Buffer Ma	sk for Filter 1	5 bits			
	1111 = Filte	er hits received in	n RX FIFO bu	uffer			
	1110 = Filte	r hits received in	n RX Buffer 1	4			
	•						
	•						
	•	n hito no ocivio d iv					
	0001 = Filte	r hits received ii					
h:+ 44 0				4 h:ta (a a ma a ma)			
DIT 11-8	F14BP<3:0	>: RX Buffer Ma	SK for Fliter 1	4 bits (same va	iues as bits<15):12>)	
bit 7-4	F13BP<3:0	>: RX Buffer Ma	sk for Filter 1	3 bits (same va	lues as bits<15	5:12>)	
bit 3-0	F12BP<3:0	RX Buffer Ma	sk for Filter 1	2 bits (same va	lues as bits<15	5:12>)	

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7M	SK<1:0>	F6MSI	F6MSK<1:0> F5MSK<1:0>		K<1:0>	F4MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3M	SK<1:0>	F2MSI	K<1:0>	F1MS	K<1:0>	F0MS	K<1:0>
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-14	F7MSK<1:0: 11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta	>: Mask Source ed ance Mask 2 re ance Mask 1 re ance Mask 0 re	for Filter 7 bi gisters contair gisters contair gisters contair	ts n mask n mask n mask			
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bi	ts (same values	as bits<15:14	! >)	
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bi	ts (same values	as bits<15:14	! >)	
bit 9-8	9-8 F4MSK<1:0>: Mask Source for Filter 4 bi			ts (same values	as bits<15:14	! >)	
bit 7-6	F3MSK<1:0:	>: Mask Source	for Filter 3 bi	ts (same values	s as bits<15:14	l>)	
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bi	ts (same values	s as bits<15:14	! >)	
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bi	ts (same values	s as bits<15:14	ł>)	
bit 1-0	F0MSK<1:0	Hask Source	for Filter 0 bi	ts (same values	s as bits<15:14	! >)	

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use ANO-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	_{Acc} (1)	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

30.1 DC Characteristics

|--|

			Maximum MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range		-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O		W	
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(Tj – Τα)/θja			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic		Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN		28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3		°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm		41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm		49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm		28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S		30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP		71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC		69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP		60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V				
	(unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
	Operating voltage VDD range as described in Section 30.1 "DC				
	Characteristics".				

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In I ² C™ mode

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

NOTES: