

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ХF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp502-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	_		—		_	—	—	-	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	—	_		—		QEI1IF	PSEMIF	—		_		—		MI2C2IF	SI2C2IF		0000
IFS4	0808	_	_	CTMUIF	_		—	_	_		C1TXIF		_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	—	—	—	—	—	_	—	—	—	_	—	—	_	0000
IFS6	080C	—	—	—	—	—	—	—	—	_	—	—	—	_	—	—	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF		_		—	_	_		_		_		—	—		0000
IFS9	0812	_	-		_		—	_	_		PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	—	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	—	—	QEI1IE	PSEMIE	—	_	—	—	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	—	—	CTMUIE	—	—	—	—	—	_	C1TXIE	—	—	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	—	_	—	—	—	_	—	_	—	_	_	—	_	0000
IEC6	082C	—	—	_	—	_	—	—	—	_	—	_	—	_	_	—	PWM3IE	0000
IEC7	082E	—	—	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC8	0830	JTAGIE	ICDIE	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC9	0832	—	—	_	—	_	—		—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	—		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		_	1	DMA0IP<2:0>		4444
IPC2	0844	—		U1RXIP<2:0)>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	—	—	_	—	_	0)MA1IP<2:	0>	_		AD1IP<2:0>		_		U1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>		_		CMIP<2:0	>			MI2C1IP<2:0	>	_	:	SI2C1IP<2:0>		4444
IPC5	084A	—	—	_	—	_	—		—	_	—	_	—	_		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		_		OC4IP<2:0)>	_		OC3IP<2:0>		_	1	DMA2IP<2:0>		4444
IPC7	084E	—		U2TXIP<2:0	>	_	ι	J2RXIP<2:(0>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850	—		C1IP<2:0>	-	_	0	C1RXIP<2:(0>	_		SPI2IP<2:0>		_		SPI2EIP<2:0>		4444
IPC9	0852	—	—	_	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	1	DMA3IP<2:0>		0444
IPC12	0858	—	—	_	—	_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	—	—	_	0440
IPC14	085C	—	_	—	—	—	(QEI1IP<2:0)>	_		PSEMIP<2:0	>	—	—	—	—	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	—	_	—	_	(C1TXIP<2:0	0>	_	—	—	—	_	_	_	_	0400
IPC19	0866	—	—	_	—	_	—	—	—	_		CTMUIP<2:0	>	_	—	—	_	0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

TABLE 4-12: PWM REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY																						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets				
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	/TPS<3:0>		0000				
PTCON2	0C02	_	_	_	_	_	—	_	—	—	_	—	_	—		PCLKDIV<2:	0>	0000				
PTPER	0C04								PTPER<15	:0>								00F8				
SEVTCMP	0C06								SEVTCMP<	5:0>								0000				
MDC	0C0A								MDC<15:)>								0000				
CHOP	0C1A	CHPCLKEN — — — — CHOPCLK<9:0> 0000																				
PWMKEY	/KEY 0C1E PWMKEY<15:0> 0000																					
Legend: -	– = unir	mplemented, re	ead as '0'.	Reset valu	es are show	vn in hexade	ecimal.				Legend: $-=$ unimplemented read as '0' Reset values are shown in hexadecimal											

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	C000
FCLCON1	0C24	_		(CLSRC<4:	:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0> (0000			
PDC1	0C26				PDC1<15:0> FF									FFF8				
PHASE1	0C28								PHASE1<15	5:0>								0000
DTR1	0C2A	_	_							DTR1<13	:0>							0000
ALTDTR1	0C2C	_	_						A	LTDTR1<1	13:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	—	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLR PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 0000								0000					
LEBDLY1	0C3C	_	_	_	—						LEB<11	:0>						0000
AUXCON1	0C3E	_	_	_	—	- BLANKSEL<3:0> CHOPSEL<3:0> CHOPHEN CHOPLEN 0000								0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
PMD7	076C		_			_		_		_	_		DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	—	_	—	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	—	_	_	—	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	—	_	—	_	_	_	0000
													DMA0MD					
	0760												DMA1MD	DTOMD				
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD]				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	_	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknown	

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15				•		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>				<u> </u>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ROON: Refer	ence Oscillato	Output Enab	ole bit			
	1 = Reference 0 = Reference	e oscillator outr e oscillator outr	but is enabled	on the REFCL	.K pin ⁽²⁾		
bit 14	Unimplemen	ted: Read as '	o'				
bit 13	ROSSLP: Re	ference Oscilla	tor Run in Sle	ep bit			
	1 = Reference	e oscillator outp	out continues	to run in Sleep			
	0 = Reference	e oscillator outp	out is disabled	l in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator	crystal is used	as the refere	nce clock			
hit 11_8		Peference Os	cillator Divide	r hite(1)			
Dit 11-0	1111 = Refer	ence clock divi	ded by 32 76	R			
	1110 = Refer	ence clock divi	ded by 16,384	4			
	1101 = Refer	ence clock divi	ded by 8,192				
	1100 = Refer	ence clock divi	ded by 4,096				
	1011 = Refer	ence clock divi	ded by 2,048				
	1010 = Relef	ence clock divi	ded by 1,024 ded by 512				
	1000 = Refer	ence clock divi	ded by 256				
	0111 = Refer	ence clock divi	ded by 128				
	0110 = Refer	ence clock divi	ded by 64				
	0101 = Refer	ence clock divi	ded by 32				
	0100 = Refer	ence clock divi	ded by 16				
	0011 = Refer	ence clock divi	ded by 6 ded by 4				
	0001 = Refer	ence clock divi	ded by 2				
	0000 = Refer	ence clock	-				
bit 7-0	Unimplemen	ted: Read as '	כי				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP43	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R<5:0>					

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit	7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP55	SR<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP54	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	_	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	_	—	TCS ^(1,3)	—
bit 7							bit 0

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

Legend:							
R = Read	lable bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	TON: Tim	ery On bit ⁽¹⁾					
	1 = Starts	16-bit Timery					
	0 = Stops	16-bit Timery					
bit 14	Unimpler	nented: Read as '0'					
bit 13	TSIDL: Ti	mery Stop in Idle Mode bit ⁽²	2)				
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 						
bit 12-7	Unimpler	nented: Read as '0'					
bit 6	TGATE: 1	imery Gated Time Accumu	lation Enable bit ⁽¹⁾				
	When TC	<u>S = 1:</u>					
	This bit is	ignored.					
	When TC	$\underline{S} = 0$:	lad				
	\perp = Gated	time accumulation is enab	led				
hit 5_4		I:0>: Timery Input Clock Pr	escale Select hits(1)				
511 0 4	11 = 1:25	6					
	10 = 1:64	•					
	01 = 1:8						
	00 = 1:1						
bit 3-2	Unimpler	nented: Read as '0'					
oit 1	TCS: Tim	ery Clock Source Select bit	(1,3)				
	1 = Extern 0 = Intern	nal clock is from pin, TyCK (al clock (FP)	(on the rising edge)				
oit O	Unimpler	nented: Read as '0'					
Note 1:	When 32-bit op functions are s	peration is enabled (T2CON et through TxCON.	<3> = 1), these bits have no ef	fect on Timery operation; all tir			

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSE	-<4:0>: Trigger/Synchronization Source Selection bits
	11111 =	OCxRS compare event is used for synchronization
	11110 =	INT2 pin synchronizes or triggers OCx
	11101 =	INT1 pin synchronizes or triggers OCx
	11100 =	CTMU module synchronizes or triggers OCx
	11011 =	ADC1 module synchronizes or triggers OCx
	11010 =	CMP3 module synchronizes or triggers OCx
	11001 =	CMP2 module synchronizes or triggers OCx
	11000 =	CMP1 module synchronizes or triggers OCx
	10111 =	Reserved
	10110 =	Reserved
	10101 =	Reserved
	10100 =	Reserved
	10011 =	IC4 input capture event synchronizes or triggers OCx
	10010 =	IC3 input capture event synchronizes or triggers OCx
	10001 =	IC2 input capture event synchronizes or triggers OCx
	10000 =	IC1 input capture event synchronizes or triggers OCx
	01111 =	Timer5 synchronizes or triggers OCx
	01110 =	Timer4 synchronizes or triggers OCx
	01101 =	Timer3 synchronizes or triggers OCx
	01100 =	Timer2 synchronizes or triggers OCx (default)
	01011 =	Timer1 synchronizes or triggers OCx
	01010 =	PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 =	Reserved
	01000 =	Reserved
	00111 =	Reserved
	00110 =	Reserved
	00101 =	Reserved
	00100 =	OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 =	OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 =	OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 =	OC1 module synchronizes or triggers OCx ^(1,2)
	00000 =	No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit				
R = Readable	e bit	W = Writable bit	t	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	I2CEN: I2Cx	Enable bit					
	1 = Enables t	he I2Cx module a	and configures	the SDAx and	SCLx pins as	serial port pins	;
		the I2Cx module;	all I ² C [™] pins a	are controlled	by port functior	IS	
bit 14	Unimplemen	ted: Read as '0'					
bit 13	I2CSIDL: 12C	x Stop in Idle Mo	de bit				
		ues module operations module operations	ation when dev	ice enters an I	die mode		
bit 12	SCI REI : SC	I x Release Cont	rol bit (when or	perating as I^2C	slave)		
Sit 12	1 = Releases	SCLx clock			olaro)		
	0 = Holds SC	Lx clock low (clo	ck stretch)				
	If STREN = 1	<u>.</u>					
	Bit is R/W (i.e	., software can w	rite '0' to initiate	e stretch and w	vrite '1' to relea	se clock). Hard	dware is clear
	at the beginn	ing of every slav	e data byte tra vare is clear at t	Insmission. Ha	ardware is clea ry slave data b	ir at the end o	f every slave
	If STREN = 0					yte reception.	
	Bit is R/S (i.e.	<u>.</u> , software can or	nly write '1' to re	elease clock). I	-lardware is cle	ar at the begin	ning of every
	slave data by	te transmission. I	Hardware is cle	ar at the end o	of every slave a	address byte re	eception.
bit 11	IPMIEN: Intel	ligent Peripheral	Management I	nterface (IPMI)) Enable bit ⁽¹⁾		
	1 = IPMI mod	e is enabled; all a	addresses are	Acknowledged	I		
	0 = IPMI mod	e disabled					
bit 10	A10M: 10-Bit	Slave Address b	olt 				
	1 = 12CXADD 0 = 12CXADD	is a 70-bit slave	address ddress				
bit 9	DISSLW: Dis	able Slew Rate C	Control bit				
	1 = Slew rate	control is disable	ed				
	0 = Slew rate	control is enable	d				
bit 8	SMEN: SMBL	us Input Levels bi	it				
	1 = Enables I	/O pin thresholds	compliant with	SMBus speci	fication		
	0 = Disables	SMBus input thre	sholds				
bit 7	GCEN: Gene	ral Call Enable bi	it (when operat	ing as I ² C slav	(e)		
	1 = Enables in	Iterrupt when a ge	neral call addre	ss is received ir	n I2CxRSR (mo	dule is enabled	tor reception)
			neu				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7(2	²⁾ ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾		
bit 7							bit 0		
Legend:									
R = Reada		vv = vvritable t	DIT		nented bit, read				
-n = value	at POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	nown		
bit 15	t 15 ADRC: ADC1 Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock								
bit 14-13	Unimplement	ted: Read as '0	3						
bit 12-8	SAMC<4:0>:	Auto-Sample T	ime bits ⁽¹⁾						
	11111 = 31 T. • • • • • •	11111 = 31 TAD • • • • • •							
hit 7 0	00000 = 0 IA		ion Clock Colo	at hita(2)					
bit 7-0 ADCS<7:0>: ADC1 Conversion Clock Select bits ⁽²⁾ 1111111 = TP • (ADCS<7:0> + 1) = TP • 256 = TAD • • • • • • • • • • • • •									
Note 1: 2:	 this bit is only used if SSRC<2:0> (AD1CON1<7:5>) = 111 and SSRCG (AD1CON1<4>) = 0. This bit is not used if ADRC (AD1CON3<15>) = 1. 								

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾
bit 15		·	•	•			bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA			CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾
bit 7		•		•	•	•	bit 0
Legend:							
R = Read	able bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CH0NB: Cha	nnel 0 Negative	Input Select fo	r Sample MUX	B bit		
	1 = Channel (0 negative input	is AN1 ⁽¹⁾				
	0 = Channel (0 negative input	i s Vrefl				
bit 14-13	Unimplemen	ted: Read as '0'	,				
bit 12-8	CH0SB<4:0>	Channel 0 Pos	itive Input Sele	ect for Sample	MUXB bits ⁽¹⁾		
	11111 = Ope	en; use this selec	tion with CTM	J capacitive ar	nd time measure	ement	
	11110 = Cha	nnel 0 positive inp	out is connected	to the CTMU te	emperature mea	surement diode	(CTMU TEMP)
	11101 = Res	erved					
	11011 = Res	erved					
	11010 = Cha	innel 0 positive ir	nput is the outp	out of OA3/AN6	₆ (2,3)		
	11001 = Cha	innel 0 positive ir	nput is the outp	out of OA2/AN)(2) (2)		
	11000 = Cha	innel 0 positive ir	nput is the outp	out of OA1/AN3	3(2)		
	•	erveu					
	•						
	•						
	10000 = Res	erved	anutia ANIZ (3)				
	01111 = Cha	innel 0 positive ir innel 0 positive ir	$\frac{1901 \text{ is AN 15}}{1001 \text{ is AN 14}}$				
	01101 = Cha	innel 0 positive ir	nput is AN13 ⁽³⁾				
	•						
	•						
	• $00010 = Cha$	innel () nositive ir	Dout is ANI2(3)				
	00001 = Cha	innel 0 positive ir	nput is AN1 ⁽³⁾				
	00000 = Cha	innel 0 positive ir	nput is AN0 ⁽³⁾				
bit 7	CH0NA: Cha	nnel 0 Negative	Input Select fo	r Sample MUX	A bit		
	1 = Channel 0 negative input is AN1 ⁽¹⁾						
	0 = Channel (0 negative input	i s Vrefl				
bit 6-5	Unimplemen	ted: Read as '0'	,				
Note 1:	AN0 through AN to determine ho	17 are repurpose w enabling a par	ed when compa ticular op amp	rator and op a or comparator	mp functionality affects selection	v is enabled. Se on choices for C	e Figure 23-1 hannels 1, 2
2:	The OAx input is	s used if the corr	responding on a	amp is selecte	d (OPMODE (C	MxCON<10>) =	= 1):

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	lı∟	Input Leakage Current ^(1,2)					
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &\text{Pin at high-impedance}, \\ &-40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \end{split}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +125^\circC \end{array}$
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	_	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	_	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾		+20(8)	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: VIL source < (Vss – 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

TABLE 31-11: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Characteristic	Min Typ Max Units Conditions				Conditions	
	LPRC @ 32.768 kHz ^(1,2)						
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 3.0-3.6V$	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.