

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \mathbf{X}

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp502-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE	4-Z:	CPU		EGISTEI	RIMAP		Z4EPX		C20X D	EVICES	ONLT							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C		W6 xxx:								xxxx							
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016		W11 x2							xxxx								
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM<1	5:0>								0000
PCL	002E			•			•	P	CL<15:1>								—	0000
PCH	0030	—	—	—	—	—	—		—	—				PCH<6:0>				0000
DSRPAG	0032	—	—	—	—	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	—	—	—	—	—	—	—				DS	SWPAG<8:0)>				0001
RCOUNT	0036			•			•		RCOUNT<	15:0>								0000
SR	0042	—	—		—	_	—	_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	—	—	—	—	_	—	—	—	—	—	IPL3	SFA	—	—	0020
DISICNT	0052	—	-							DISICNT	<13:0>							0000
TBLPAG	0054	—	—	—	—	—	—	—	—				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	15:0>								0000

D I -4.0 - -

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
	0.400								Cas dafini	tion								Resets
	0400- 041E								See defini	tion when with = x								
C1BUFPNT1	0420		F3B	P<3:0>			F2BI	><3:0>		F1BP<3:0> F0BP<3:0>						0000		
C1BUFPNT2	0422		F7BP<3:0> F6BP<3:0>					F5BP	2 <3:0>			F4BP<3:0>						
C1BUFPNT3	0424		F11BP<3:0> F10BP<3:0>				F9BP	2 <3:0>			F8BP<3:0>							
C1BUFPNT4	0426	F15BP<3:0> F14BP<3:0>			F13BP<3:0>			F12BP<3:0>				0000						
C1RXM0SID	0430	SID<10:3>				SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx					
C1RXM0EID	0432	EID<15:8>						EID<	:7:0>				xxxx					
C1RXM1SID	0434	SID<10:3>			SID<2:0> — MIDE — EID<				17:16>	xxxx								
C1RXM1EID	0436	EID<15:8>			EID<7:0>					xxxx								
C1RXM2SID	0438	SID<10:3>			SID<2:0> — MIDE —				EID<	17:16>	xxxx							
C1RXM2EID	043A	EID<15:8>			EID<7:0>				-		xxxx							
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442	EID<15:8>			EID<7:0>					-		xxxx						
C1RXF1SID	0444	SID<10:3>				SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx					
C1RXF1EID	0446	EID<15:8>						EID<	:7:0>		-		xxxx					
C1RXF2SID	0448		SID<10:3>				SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx				
C1RXF2EID	044A				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> — EXIDE —				_	EID<	17:16>	xxxx	
C1RXF4EID	0452				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF5SID	0454				SID<	:10:3>				SID<2:0> — EXIDE — EID<					EID<	17:16>	xxxx	
C1RXF5EID	0456				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	:7:0>		-		xxxx
C1RXF7SID	045C				SID<	:10:3>				_	SID<2:0>			EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	:7:0>	_	_		xxxx
C1RXF8SID	0460	SID<10:3>				SID<2:0>			EXIDE	_	EID<	17:16>	xxxx					
C1RXF8EID	0462	EID<15:8>						EID<	:7:0>	_	_		xxxx					
C1RXF9SID	0464	SID<10:3>				SID<2:0>			EXIDE	_	EID<	17:16>	xxxx					
C1RXF9EID	0466				EID<	:15:8>							EID<	:7:0>		-		xxxx
C1RXF10SID	0468				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A				EID	:15:8>							EID<	7:0>		_		xxxx
C1RXF11SID	046C		SID<10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx			

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SCK2INR<6:0	>		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
1.1.45			- ¹				
DIT 15	Unimpleme	nted: Read as	0.				
bit 14-8	SCK2INR<6 (see Table 1	5:0>: Assign SPI 1-2 for input pin	2 Clock Input selection nur	t (SCK2) to the mbers)	Correspondin	g RPn Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input fied to Vss					
bit 7	Unimpleme	nted: Read as	0'				
bit 6-0	SDI2R<6:0> (see Table 1	 Assign SPI2 D 1-2 for input pin 	ata Input (SE selection nur	012) to the Corre nbers)	esponding RP	n Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss					

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP39F	२<5:0>		
bit 15	•						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP38F	२<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP39R<5:0>	: Peripheral Ou	Itput Function	n is Assigned to I	RP39 Output I	⊃in bits	

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RP40	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7			bit 0
Legend:	HS = Hardware Settal	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾

SYNCSEL0⁽⁴⁾

		P	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	TRGDI	V<3:0>		—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			TRGSTF	RT<5:0>(1)					
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	x = Bit is unknown			
bit 15-12	TRGDIV<3:0	>: Trigger # Ou	tput Divider b	its						
	1111 = Trigg	er output for ev	ery 16th trigg	er event						
	1110 = Trigg	er output for ev	ery 15th trigg	er event						
	1101 = Trigg	er output for ev	ery 14th trigg	er event						
	1100 = Trigg	er output for ev	ery 13th trigg	er event						
	1011 = Irigg	er output for ev	ery 12th trigg	er event						
	1010 = Trigg	er output for ev	ery 11th trigge	er event						
	1001 - Trigg	er output for ev	ery 9th triage	r event						
	0111 = Triag	er output for ev	erv 8th triage	r event						
	0110 = Triag	er output for ev	erv 7th triage	r event						
	0101 = Trigg	er output for ev	ery 6th trigge	r event						
	0100 = Trigg	er output for ev	ery 5th trigge	r event						
	0011 = Trigg	er output for ev	ery 4th trigge	r event						
	0010 = Trigg	er output for ev	ery 3rd trigge	r event						
	0001 = Trigg	er output for ev	ery 2nd trigge	erevent						
	0000 = Trigg	er output for ev	ery trigger ev	ent						
bit 11-6	Unimplemer	nted: Read as '	0'							
bit 5-0	TRGSTRT<5	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾					
	111111 = W	aits 63 PWM cy	cles before g	enerating the fir	rst trigger event	after the modu	lle is enabled			
	•									
	•									
	•									
	000010 = W	aits 2 PWM cyc	les before ge	nerating the firs	t trigger event a	after the module	e is enabled			
	000001 = W	aits 1 PWM cyc	le before gen	erating the first	trigger event a	fter the module	is enabled			
	000000 = W	aits 0 PWM cyc	les before ge	nerating the firs	t trigger event a	after the module	e is enabled			

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TADLE 30-23. THVIER I EATERINAL CLOCK THVIING REQUIREIVIEN 13	TABLE 30-23:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾
---	--------------	-----------------	---------------------	------------------------------------

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions	
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	35	—	—	ns		
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	10	—	—	ns		
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)	
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz		
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns		

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

AC CHARA	CTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP		
15 MHz	Table 30-33		_	0,1	0,1	0,1		
9 MHz	—	Table 30-34	—	1	0,1	1		
9 MHz	—	Table 30-35	—	0	0,1	1		
15 MHz	—	—	Table 30-36	1	0	0		
11 MHz	—	—	Table 30-37	1	1	0		
15 MHz		_	Table 30-38	0	1	0		
11 MHz	_	_	Table 30-39	0	0	0		

TABLE 30-33: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-14: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-21: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. ⁽²⁾ Max. Units Con					
SP10	FscP	Maximum SCK1 Frequency	_		10	MHz	(Note 3)		
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO1 Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
Op Amp DC Characteristics								
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	Vсм = AVdd/2	
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV		
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	—	90		db		
CM44	los	Input Offset Current	—	_	_		See pad leakage currents in Table 30-11	
CM45	Ів	Input Bias Current	—	—	_	_	See pad leakage currents in Table 30-11	
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ		
CM49a	VOADC	Output Voltage Measured at OAx Using ADC ^(3,4)	AVss + 0.077 AVss + 0.037 AVss + 0.018		AVDD – 0.077 AVDD – 0.037 AVDD – 0.018	V V V	Ιουτ = 420 μΑ Ιουτ = 200 μΑ Ιουτ = 100 μΑ	
CM49b	Vout	Output Voltage Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.210 AVss + 0.100 AVss + 0.050		AVDD - 0.210 AVDD - 0.100 AVDD - 0.050	V V V	Ιουτ = 420 μΑ Ιουτ = 200 μΑ Ιουτ = 100 μΑ	
CM51	RINT1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C	

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

NOTES:

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		36		
Number of Pins per Side	ND		10		
Number of Pins per Side	NE		8		
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.75 3.9			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60 3.75 3.90			
Contact Width	b	0.20	0.25	0.30	
Contact Length L 0.20 0.25			0.30		
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.