

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp504-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	—		JTAGIP<2:0)>	—		ICDIP<2:0	>	—	_	—	—	_	_	—	-	4400
IPC36	0888	_		PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	- PTGSTEPIP<2:0>		_	_	_	_	4440		
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:	0>	_	– PTG2IP<2:0>		_	— PTG1IP<2:0>			0444	
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	_	_	_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	—	—	_	—	_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—	—	_	_	_	—	_	—	_	DAE	DOOVR	—	—	—		0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<3:0>						VECN	IUM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	—	_	_	_	_	_	PLLDIV8	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	
bit 7		·			•		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	id as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000:	= 50 (default)						
	•							
	•							
	•							
	00000010:	= 4						
	000000001	= 3 = 2						
	000000000000	-						

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
DTC1	DTC0	DTCP ⁽³⁾	<u> </u>	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾				
bit 7							bit 0				
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit						
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
bit 15	FLTSTAT: Fai 1 = Fault inter 0 = No Fault i This bit is clea	ult Interrupt Statu rrupt is pending interrupt is pendi	us bit ⁽¹⁾ ng LTIEN = 0								
hit 14	CI STAT. Cur	rent-l imit Interru	nt Status hit(1)								
	1 = Current-limit interrupt is pending 0 = No current-limit interrupt is pending This bit is cleared by setting CLIEN = 0.										
bit 13	bit 13 TRGSTAT: Trigger Interrupt Status bit										
	1 = Trigger in 0 = No trigger This bit is clea	terrupt is pending r interrupt is pend ared by setting T	g ding RGIEN = 0.								
bit 12	FLTIEN: Faul	t Interrupt Enabl	e bit								
	1 = Fault inter 0 = Fault inter	rrupt is enabled rrupt is disabled	and the FLTST	AT bit is cleare	ed						
bit 11	CLIEN: Curre	ent-Limit Interrup	t Enable bit								
	1 = Current-lii 0 = Current-lii	mit interrupt is er mit interrupt is di	nabled sabled and the	CLSTAT bit is	cleared						
bit 10	TRGIEN: Trig	ger Interrupt Ena	able bit								
	1 = A trigger e 0 = Trigger ev	event generates /ent interrupts ar	an interrupt rec	quest the TRGSTAT	bit is cleared						
bit 9	ITB: Independ	dent Time Base	Mode bit ⁽²⁾								
	1 = PHASEx (0 = PTPER re	register provides egister provides f	time base peri timing for this F	iod for this PW WM generato	/M generator r						
bit 8	MDCS: Maste	er Duty Cycle Re	gister Select bi	it(2)							
	1 = MDC regi 0 = PDCx reg	ster provides du ister provides du	ty cycle informa ity cycle inform	ation for this P ation for this F	WM generator WM generator						
Note 1:	Software must clea	ar the interrupt st	atus here and	in the correspo	onding IFSx bit	in the interrup	ot controller.				
2:	These bits should	not be changed	after the PWM	, is enabled (P	PTEN = 1).						
3:	DTC<1:0> = 11 for	r DTCP to be effe	ective; otherwis	se, DTCP is ig	nored.						
4:	The Independent T CAM bit is ignored	Time Base (ITB =	1) mode must	be enabled to	use Center-Ali	igned mode. If	TTB = 0, the				
-	T		· · · · · · · · · · · · · · · · · · ·								

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PDC	x<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PDC	x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknow			nown		

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	Ex<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	SEx<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGIS	TER
---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	D<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	D<23:16>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	D<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTH	_D<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable b	pit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to the " UART " (DS70582) section in the <i>"dsPIC33/PIC24 Family Reference Manual"</i> for information on enabling the UARTx module for receive or transmit operation.

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	_	_	_	_	_					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE					
bit 7					·		bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-8 Unimplemented: Read as '0'												
bit 7	IVRIE: Invalid	IVRIE: Invalid Message Interrupt Enable bit										
	1 = Interrupt r	equest is enab	led									
		request is not e	nabled									
DIT 6	WAKIE: Bus	vvake-up Activi	ty interrupt Er	Table bit								
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	request is enab	nabled									
bit 5	ERRIE: Frror	Interrupt Enab	le bit									
	1 = Interrupt r	request is enab	led									
	0 = Interrupt r	equest is not e	nabled									
bit 4	Unimplemen	ted: Read as ')'									
bit 3	FIFOIE: FIFO	Almost Full Int	errupt Enable	e bit								
	1 = Interrupt r	request is enab	led									
	0 = Interrupt r	request is not e	nabled									
bit 2	RBOVIE: RX	Buffer Overflov	v Interrupt En	able bit								
	1 = Interrupt r	request is enab	led nabled									
hit 1												
bit 1	1 = Interrupt r	request is enab	led									
	0 = Interrupt r	request is not e	nabled									
bit 0	TBIE: TX Buff	fer Interrupt En	able bit									
	1 = Interrupt r	request is enab	led									
	0 = Interrupt r	request is not e	nabled									

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

_							
	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0
bit 15						l	bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')' 				
bit 14	WAKFIL: Sel	ect CAN Bus L	ine Filter for V	Vake-up bit			
	1 = Uses CAP 0 = CAN bus	n dus line filter line filter is not	tor wake-up	2-UD			
hit 13-11	Unimplemen	ted: Read as '	n'				
bit 10-8	SEG2PH<2:0	>: Phase Sear	nent 2 bits				
	111 = Length	is 8 x TQ					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ct bit			
	1 = Freely pro 0 = Maximum	ogrammable of SEG1PHx I	oits or Informa	tion Processin	g Time (IPT), w	/hichever is gre	ater
bit 6	SAM: Sample	of the CAN B	us Line bit		0 ()/	0	
	1 = Bus line is 0 = Bus line is	s sampled three s sampled once	e times at the at the sample	sample point e point			
bit 5-3	SEG1PH<2:0	>: Phase Segr	nent 1 bits	·			
	111 = Length	is 8 x Tq					
	•						
	•						
	•						
	000 = Length	is 1 x Tq					
bit 2-0	PRSEG<2:0>	: Propagation	Time Segmen	t bits			
	111 = Length	is 8 x TQ					
	•						
	•						
	•	ie 1 v To					
	UUU - Lengin	UIAIG					

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0						
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown				
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit							
	1 = Edge 1 is edge-sensitive										
bit 14		dae 1 Polarity	Select bit								
bit 14	L = Edge 1 is programmed for a positive edge response										
	 Description a positive edge response 0 = Edge 1 is programmed for a negative edge response 										
bit 13-10	EDG1SEL<3:0>: Edge 1 Source Select bits										
	1xxx = Reserved										
	01xx = Reser	01xx = Reserved									
	0011 = CTED1 pin 0010 = CTED2 pin										
	0001 = OC1 module										
	0000 = Time r	1 module									
bit 9	EDG2STAT: Edge 2 Status bit										
	Indicates the status of Edge 2 and can be written to control the edge source.										
	1 = Edge 2 h 0 = Edge 2 h	as occurred as not occurred	ł								
bit 8	EDG1STAT: Edge 1 Status bit										
	Indicates the status of Edge 1 and can be written to control the edge source.										
	1 = Edge 1 has occurred										
	0 = Edge 1 h	as not occurred	1	.							
bit /	EDG2MOD: Eage 2 Eage Sampling Mode Selection bit										
	$\perp = \exists age \ge is eage-sensitive$ $0 = Edge 2 is level-sensitive$										
bit 6	EDG2POL: Edge 2 Polarity Select bit										
5.00	1 = Edge 2 is programmed for a positive edge response										
	0 = Edge 2 is	programmed f	or a negative e	edge response							
bit 5-2	EDG2SEL<3:0>: Edge 2 Source Select bits										
	1111 = Reserved										
	01xx = Keserved 0100 = CMP1 module										
	0.011 = CTED2 pin										
	0010 = CTED1 pin										
	0001 = OC1 module										
hit 1₋0			۱'								
	ommplemen	ieu. Reau as (J								

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM	5 ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0			
bit 15		·		·			bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	_	—			
bit 7							bit 0			
Legend:										
R = Read	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value	e at POR	'1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unknown					
bit 15-10	ITRIM<5:0>:	Current Source	Trim bits							
	011111 = Ma	aximum positive	change from	nominal curren	t + 62%					
	011110 = Ma	aximum positive	change from	nominal curren	t + 60%					
	•									
	•									
	•				. 40/					
	000010 = Mil	000010 = Minimum positive change from nominal current + 4%								
	0000001 = Nm	minal current ou	itput specified	by IRNG<1:0>	> 2 /0					
	111111 = Mi i	111111 = Minimum negative change from nominal current -2%								
	 111110 = Minimum negative change from nominal current – 4% • 									
	•									
•										
	100010 = Maximum negative change from nominal current – 60% 100001 = Maximum negative change from nominal current – 62%									
bit 9-8	IRNG<1:0>: (IRNG<1:0>: Current Source Range Select bits								
	11 = 100 × Ba	11 = $100 \times \text{Base Current}^{(2)}$								
	$10 = 10 \times Bas$	se Current ⁽²⁾								
	$01 = Base CL00 = 1000 \times F$	Base Current(1,2)							
bit 7-0	Unimplemen	ted: Read as '0	3							
Note 1.	This current range	e is not available	to he used w	with the internal	temperature n	neasurement di	ode			
14016 1.										

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0			
bit 15					•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS			
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾			
bit 7							bit 0			
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t			
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknov	vn			
bit 15	ADON: ADO	C1 Operating N	lode bit							
	1 = ADC mo	1 = ADC module is operating								
	0 = ADC is	off								
bit 14	Unimpleme	ented: Read as	'0'							
bit 13	ADSIDL: AI	DC1 Stop in Idle	e Mode bit							
	1 = Disconti	inues module o	peration when	device enters	Idle mode					
	0 = Continu	es module ope	ration in Idle mo	ode						
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit							
	 1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer. 									
bit 11	Unimpleme	Unimplemented: Read as '0'								
bit 10	AD12B: ADC1 10-Bit or 12-Bit Operation Mode bit									
	1 = 12-bit, 1-channel ADC operation									
	0 = 10-bit, 4	-channel ADC	operation							
bit 9-8	FORM<1:0	>: Data Output	Format bits							
	For 10-Bit C	For 10-Bit Operation:								
	11 = Signed	11 = Signed fractional (Dout = sddd dddd dd00 0000, where $s = .NOT.d<9>$)								
	10 = Fractional (DOUT = dddd dddd ddd0 0000)									
	01 - Signed integer (DOUT - SSSS SSSC data adda, where $s = .1001.0397$) 00 = Integer (DOUT = 0000 00dd dddd dddd)									
	For 12-Bit C	For 12-Bit Operation:								
	11 = Signed	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)								
	10 = Fractic	10 = Fractional (Dout = dddd dddd dddd 0000)								
	$U \perp = Signed integer (DOUT = ssss sidid didid didid, where s = .NO1.0<11>) \Omega = Integer (DOUT = 0.000 didid didid didid)$									
		. (2001 - 0000		adduj						
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.			

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations" . Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 "User ID Words" .
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

DMAxSTAH (DMA Channel x	
Start Address A, High)	144
DMAxSTAL (DMA Channel x	
Start Address A, Low)	144
DMAxSTBH (DMA Channel x	
Start Address B, High)	145
DMAxSTBL (DMA Channel x	
Start Address B, Low)	145
DSADRH (DMA Most Recent RAM	4 4 7
High Address)	147
DSADRL (DMA MOSt Recent RAM	1 4 7
DTPy (PWMy Dead-Time)	147 238
ECL CONV (PWMx Eault Current-Limit Control)	2/3
I2CYCON (I2Cy Control)	276
I2CxMSK (I2Cx Slave Mode Address Mask)	280
I2CxSTAT (I2Cx Status)	278
ICxCON1 (Input Capture x Control 1)	215
ICxCON2 (Input Capture x Control 2)	216
INDX1CNTH (Index Counter 1 High Word)	259
INDX1CNTL (Index Counter 1 Low Word)	259
INDX1HLD (Index Counter 1 Hold)	260
INT1HLDH (Interval 1 Timer Hold High Word)	264
INT1HLDL (Interval 1 Timer Hold Low Word)	264
INT1TMRH (Interval 1 Timer High Word)	263
INT1TMRL (Interval 1 Timer Low Word)	263
INTCON1 (Interrupt Control 1)	134
INTCON2 (Interrupt Control 2)	136
INTCON2 (Interrupt Control 3)	137
INTCON4 (Interrupt Control 4)	137
INTTREG (Interrupt Control and Status)	138
IOCONx (PWMx I/O Control)	240
LEBCONx (PWMx Leading-Edge	
LEBCONx (PWMx Leading-Edge Blanking Control)	245
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge	245
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay)	245 246
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High)	245 246 234 122
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMADRL (Nonvolatile Memory (NV/M) Control)	245 246 234 122 122 121
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key)	245 246 234 122 122 121 122
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1)	245 234 122 122 121 122 122 122 122
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	245 234 122 122 121 122 122 221 223
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control)	245 246 234 122 122 121 122 221 223 156
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning)	245 246 234 122 122 121 122 221 223 156 161
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle)	245 246 234 122 122 121 122 221 223 156 161 237
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift)	245 246 234 122 122 121 122 221 223 156 161 237 237
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor)	245 246 234 122 122 121 122 221 223 156 161 237 237 160
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON1 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4)	245 246 234 122 121 122 221 223 156 161 237 237 237 160 166 168 169 169
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4)	245 246 234 122 122 121 221 125 161 237 160 166 168 169 169 170
 LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Modress Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) 	245 246 234 122 122 121 221 223 156 161 237 237 160 166 168 169 169 170 171
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1) PMD2 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7)	245 246 234 122 122 121 221 221 223 156 161 237 237 160 166 168 169 169 170 171 258
 LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Modress Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTL (Position Counter 1 Low Word) 	245 246 234 122 122 121 221 122 233 156 161 237 160 166 168 169 169 170 171 258 258
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PHD1 (Peripheral Module Disable Control 1) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD7 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTL (Position Counter 1 Hold)	245 246 234 122 122 121 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258
 LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTL (Position Counter 1 Hold) PTCON (PWMx Time Base Control) 	245 246 234 122 122 121 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PHD1 (Peripheral Module Disable Control 1) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD7 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTL (Position Counter 1 Hold) PTCON (PWMx Time Base Control)	245 246 234 122 121 122 221 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230 232
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PHD1 (Peripheral Module Disable Control 1) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD7 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTH (Position Counter 1 Hold) PTCON (PWMx Time Base Control) PTCON 2 (PWMx Primary Master Clock Divider Select 2) PTGADJ (PTG Adjust) PTGADJ (PTG Adjust) PTGADJ (PTG Adjust)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230 232 348 242
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PHD1 (Peripheral Module Disable Control 1) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD7 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTH (Position Counter 1 Hold) PTCON (PWMx Time Base Control) PTCON 2 (PWMx Primary Master Clock Divider Select 2) PTGADJ (PTG Adjust) PTGBTE (PTG Broadcast Trigger Enable) PTGBTE (PTG Broadcast Trigger Enable)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230 232 348 343 346
LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRH (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PHD1 (Peripheral Module Disable Control 1) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD7 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTH (Position Counter 1 Hold) PTCON (PWMx Time Base Control) PTGADJ (PTG Adjust) PTGBTE (PTG Broadcast Trigger Enable) PTGGULIM (PTG Counter 1 Limit) PTGC11 IM (PTG Counter 1 Limit)	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169 169 170 171 258 258 258 230 232 348 343 346 347
 LEBCONx (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1) PMD2 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6) PMD7 (Peripheral Module Disable Control 7) POS1CNTH (Position Counter 1 High Word) POS1CNTL (Position Counter 1 Hold) PTCON2 (PWMx Primary Master Clock Divider Select 2) PTGADJ (PTG Adjust) PTGCLIIM (PTG Counter 0 Limit) PTGC1LIM (PTG Counter 1 Limit) PTGC1LIM (PTG Conter 1 Limit) PTGC1LIM (PTG Conter 1 Limit) 	245 246 234 122 122 121 122 221 223 156 161 237 237 160 166 168 169 169 169 170 171 258 258 258 230 244 343 346 347 342

PTGCST (PTG Control/Status)	340
PTGHOLD (PTG Hold)	347
PTGL0 (PTG Literal 0)	348
PTGQPTR (PTG Step Queue Pointer)	349
PTGQUEx (PTG Step Queue x)	349
PTGSDLIM (PTG Step Delay Limit)	346
PTGT0LIM (PTG Timer0 Limit)	345
PTGT1LIM (PTG Timer1 Limit)	345
PTPER (PWMx Primary Master Time	
Base Period)	233
PWMCONx (PWMx Control)	235
QEI1CON (QEI1 Control)	252
QEI1GECH (QEI1 Greater Than or Equal	
Compare High Word)	262
QEI1GECL (QEI1 Greater Than or Equal	
Compare Low Word)	262
QEI1ICH (QEI1 Initialization/Capture	
High Word)	260
QEITICL (QEIT Initialization/Capture	
	260
QEI1IOC (QEI1 I/O Control)	254
QEITLECH (QEIT Less Than or Equal	004
Compare High Word)	261
QEITLECL (QEIT Less Than or Equal	261
	201
QEITSTAT (QEIT Status)	200
REENCON (Reset Control)	162
REI OCON (Relefence Oscillator Control)	102
PDINR1 (Peripheral Pin Select Input 1)	18/
RPINR1 (Perinheral Pin Select Input 1)	187
RPINR12 (Perinheral Pin Select Input 12)	188
RPINR14 (Perinheral Pin Select Input 14)	180
RPINR15 (Peripheral Pin Select Input 15)	190
RPINR18 (Peripheral Pin Select Input 18)	191
RPINR19 (Peripheral Pin Select Input 19)	191
RPINR22 (Peripheral Pin Select Input 22)	192
RPINR23 (Peripheral Pin Select Input 23)	193
RPINR26 (Peripheral Pin Select Input 26)	193
RPINR3 (Peripheral Pin Select Input 3)	184
RPINR37 (Peripheral Pin Select Input 37)	194
RPINR38 (Peripheral Pin Select Input 38)	195
RPINR39 (Peripheral Pin Select Input 39)	196
RPINR7 (Peripheral Pin Select Input 7)	185
RPINR8 (Peripheral Pin Select Input 8)	186
RPOR0 (Peripheral Pin Select Output 0)	197
RPOR1 (Peripheral Pin Select Output 1)	197
RPOR2 (Peripheral Pin Select Output 2)	198
RPOR3 (Peripheral Pin Select Output 3)	198
RPOR4 (Peripheral Pin Select Output 4)	199
RPOR5 (Peripheral Pin Select Output 5)	199
RPOR6 (Peripheral Pin Select Output 6)	200
RPOR7 (Peripheral Pin Select Output 7)	200
RPOR8 (Peripheral Pin Select Output 8)	201
RPOR9 (Peripheral Pin Select Output 9)	201
SEVTCMP (PWMx Primary Special	
Event Compare)	233
SPIxCON1 (SPIx Control 1)	270
SPIXCON2 (SPIX Control 2)	272
SPIXSTAT (SPIX Status and Control)	268
SR (CPU STATUS)	132
TROON (Timer1 Control)	205
TRECONX (PWMX Trigger Control)	239
TRIGX (PWWX Primary Trigger Compare Value)	242
	210

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support