

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                         |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 60 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                       |
| Number of I/O              | 35                                                                               |
| Program Memory Size        | 256КВ (85.5К х 24)                                                               |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 16K x 16                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 9x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 150°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 44-TQFP                                                                          |
| Supplier Device Package    | 44-TQFP (10x10)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp504-h-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Pin Diagrams (Continued)



| Pin Name <sup>(4)</sup>                   | Pin<br>Type | Buffer<br>Type | PPS | Description                                                    |  |  |  |
|-------------------------------------------|-------------|----------------|-----|----------------------------------------------------------------|--|--|--|
| U2CTS                                     | 1           | ST             | No  | UART2 Clear-To-Send.                                           |  |  |  |
| U2RTS                                     | 0           |                | No  | UART2 Ready-To-Send.                                           |  |  |  |
| U2RX                                      | I.          | ST             | Yes | UART2 receive.                                                 |  |  |  |
| U2TX                                      | Ó           | _              | Yes | UART2 transmit.                                                |  |  |  |
| BCLK2                                     | Ō           | ST             | No  | UART2 IrDA <sup>®</sup> baud clock output.                     |  |  |  |
| SCK1                                      | I/O         | ST             | No  | Synchronous serial clock input/output for SPI1.                |  |  |  |
| SDI1                                      | I           | ST             | No  | SPI1 data in.                                                  |  |  |  |
| SDO1                                      | 0           | —              | No  | SPI1 data out.                                                 |  |  |  |
| SS1                                       | I/O         | ST             | No  | SPI1 slave synchronization or frame pulse I/O.                 |  |  |  |
| SCK2                                      | I/O         | ST             | Yes | Synchronous serial clock input/output for SPI2.                |  |  |  |
| SDI2                                      | I           | ST             | Yes | SPI2 data in.                                                  |  |  |  |
| SDO2                                      | 0           | —              | Yes | SPI2 data out.                                                 |  |  |  |
| SS2                                       | I/O         | ST             | Yes | SPI2 slave synchronization or frame pulse I/O.                 |  |  |  |
| SCL1                                      | I/O         | ST             | No  | Synchronous serial clock input/output for I2C1.                |  |  |  |
| SDA1                                      | I/O         | ST             | No  | Synchronous serial data input/output for I2C1.                 |  |  |  |
| ASCL1                                     | I/O         | ST             | No  | Alternate synchronous serial clock input/output for I2C1.      |  |  |  |
| ASDA1                                     | I/O         | ST             | No  | Alternate synchronous serial data input/output for I2C1.       |  |  |  |
| SCL2                                      | I/O         | ST             | No  | Synchronous serial clock input/output for I2C2.                |  |  |  |
| SDA2                                      | I/O         | ST             | No  | Synchronous serial data input/output for I2C2.                 |  |  |  |
| ASCL2                                     | I/O         | ST             | No  | Alternate synchronous serial clock input/output for I2C2.      |  |  |  |
| ASDA2                                     | I/O         | ST             | No  | Alternate synchronous serial data input/output for I2C2.       |  |  |  |
| TMS <sup>(5)</sup>                        | Ι           | ST             | No  | JTAG Test mode select pin.                                     |  |  |  |
| TCK                                       | I           | ST             | No  | JTAG test clock input pin.                                     |  |  |  |
| TDI                                       | I           | ST             | No  | JTAG test data input pin.                                      |  |  |  |
| TDO                                       | 0           | _              | No  | JTAG test data output pin.                                     |  |  |  |
| C1RX <sup>(2)</sup>                       | I           | ST             | Yes | ECAN1 bus receive pin.                                         |  |  |  |
| C1TX <sup>(2)</sup>                       | 0           | _              | Yes | ECAN1 bus transmit pin.                                        |  |  |  |
| FLT1 <sup>(1)</sup> , FLT2 <sup>(1)</sup> | I           | ST             | Yes | PWM Fault Inputs 1 and 2.                                      |  |  |  |
| FLT3 <sup>(1)</sup> , FLT4 <sup>(1)</sup> | I           | ST             | No  | PWM Fault Inputs 3 and 4.                                      |  |  |  |
| FLT32 <sup>(1,3)</sup>                    | I           | ST             | No  | PWM Fault Input 32 (Class B Fault).                            |  |  |  |
| DTCMP1-DTCMP3 <sup>(1)</sup>              | I           | ST             | Yes | PWM Dead-Time Compensation Inputs 1 through 3.                 |  |  |  |
| PWM1L-PWM3L <sup>(1)</sup>                | 0           | —              | No  | PWM Low Outputs 1 through 3.                                   |  |  |  |
| PWM1H-PWM3H <sup>(1)</sup>                | 0           | —              | No  | PWM High Outputs 1 through 3.                                  |  |  |  |
| SYNCI1 <sup>(1)</sup>                     | I           | ST             | Yes | PWM Synchronization Input 1.                                   |  |  |  |
| SYNCO1 <sup>(1)</sup>                     | 0           | —              | Yes | PWM Synchronization Output 1.                                  |  |  |  |
| INDX1 <sup>(1)</sup>                      | Ι           | ST             | Yes | Quadrature Encoder Index1 pulse input.                         |  |  |  |
| HOME1 <sup>(1)</sup>                      | I           | ST             | Yes | Quadrature Encoder Home1 pulse input.                          |  |  |  |
| QEA1 <sup>(1)</sup>                       | I           | ST             | Yes | Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer |  |  |  |
| (4)                                       |             |                |     | external clock/gate input in Timer mode.                       |  |  |  |
| QEB1 <sup>(1)</sup>                       | I           | ST             | Yes | Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer |  |  |  |
|                                           |             |                |     | external clock/gate input in Timer mode.                       |  |  |  |
| CNTCMP1''                                 | υ           | —              | Yes | Quadrature Encoder Compare Output 1.                           |  |  |  |

# TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

#### FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER







## REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

| bit 2 | SFA: Stack Frame Active Status bit                                                        |
|-------|-------------------------------------------------------------------------------------------|
|       | 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and |
|       | DSWPAG values                                                                             |
|       | 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space              |
| hit 1 | PND: Dounding Mode Select hit(1)                                                          |

- bit 1 **RND:** Rounding Mode Select bit<sup>(1)</sup>
  - 1 = Biased (conventional) rounding is enabled
  - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit<sup>(1)</sup> 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
  - **2:** This bit is always read as '0'.
  - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.



# FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

# TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8 | Bit 7 | Bit 6   | Bit 5      | Bit 4   | Bit 3    | Bit 2  | Bit 1       | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|------------|--------|--------|--------|-----------|-------|-------|---------|------------|---------|----------|--------|-------------|--------|---------------|
| IPC35        | 0886  | —      |        | JTAGIP<2:0 | )>     | —      |        | ICDIP<2:0 | >     | —     | _       | —          | —       | _        | _      | —           | -      | 4400          |
| IPC36        | 0888  | _      |        | PTG0IP<2:0 | )>     | _      | PT     | GWDTIP<   | 2:0>  | _     | PT      | GSTEPIP<2  | ::0>    | _        | _      | _           | _      | 4440          |
| IPC37        | 088A  | _      | _      | _          | _      | _      | F      | PTG3IP<2: | 0>    | _     |         | PTG2IP<2:0 | >       | _        | I      | PTG1IP<2:0> |        | 0444          |
| INTCON1      | 08C0  | NSTDIS | OVAERR | OVBERR     | _      | _      | _      | _         | —     | _     | DIV0ERR | DMACERR    | MATHERR | ADDRERR  | STKERR | OSCFAIL     | _      | 0000          |
| INTCON2      | 08C2  | GIE    | DISI   | SWTRAP     | —      | —      | —      | —         | _     | —     | _       | —          | —       | _        | INT2EP | INT1EP      | INT0EP | 8000          |
| INTCON3      | 08C4  | —      | —      | —          | _      | _      | _      | —         | _     | —     | _       | DAE        | DOOVR   | —        | —      | —           |        | 0000          |
| INTCON4      | 08C6  | _      | _      | _          | _      | _      | _      | _         | —     | _     | _       | _          | _       | _        | _      | _           | SGHT   | 0000          |
| INTTREG      | 08C8  | _      | _      | _          | _      |        | ILR<   | 3:0>      |       |       |         |            | VECN    | IUM<7:0> |        |             |        | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|---------------|
| TRISA        | 0E00  |        | —      | —      |        |        |        | —     |       |       | —     |       | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 001F          |
| PORTA        | 0E02  |        | —      | _      |        | _      |        | —     |       |       | —     |       | RA4    | RA3    | RA2    | RA1    | RA0    | 0000          |
| LATA         | 0E04  |        | —      | —      |        |        |        | —     |       |       | —     |       | LATA4  | LATA3  | LATA2  | LA1TA1 | LA0TA0 | 0000          |
| ODCA         | 0E06  |        | —      | —      |        |        |        | —     |       |       | —     |       | ODCA4  | ODCA3  | ODCA2  | ODCA1  | ODCA0  | 0000          |
| CNENA        | 0E08  |        | —      | —      |        |        |        | —     |       |       | —     |       | CNIEA4 | CNIEA3 | CNIEA2 | CNIEA1 | CNIEA0 | 0000          |
| CNPUA        | 0E0A  |        | —      | —      |        |        |        | —     |       |       | —     |       | CNPUA4 | CNPUA3 | CNPUA2 | CNPUA1 | CNPUA0 | 0000          |
| CNPDA        | 0E0C  |        | —      | —      |        |        |        | —     |       |       | —     |       | CNPDA4 | CNPDA3 | CNPDA2 | CNPDA1 | CNPDA0 | 0000          |
| ANSELA       | 0E0E  | -      | —      | —      |        |        | -      | —     |       | _     | _     |       | ANSA4  | _      | —      | ANSA1  | ANSA0  | 0013          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

| File<br>Name | Addr. | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISB        | 0E10  | TRISB15 | TRISB14 | TRISB13 | TRISB12 | TRISB11 | TRISB10 | TRISB9 | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | FFFF          |
| PORTB        | 0E12  | RB15    | RB14    | RB13    | RB12    | RB11    | RB10    | RB9    | RB8    | RB7    | RB6    | RB5    | RB4    | RB3    | RB2    | RB1    | RB0    | xxxx          |
| LATB         | 0E14  | LATB15  | LATB14  | LATB13  | LATB12  | LATB11  | LATB10  | LATB9  | LATB8  | LATB7  | LATB6  | LATB5  | LATB4  | LATB3  | LATB2  | LATB1  | LATB0  | xxxx          |
| ODCB         | 0E16  | ODCB15  | ODCB14  | ODCB13  | ODCB12  | ODCB11  | ODCB10  | ODCB9  | ODCB8  | ODCB7  | ODCB6  | ODCB5  | ODCB4  | ODCB3  | ODCB2  | ODCB1  | ODCB0  | 0000          |
| CNENB        | 0E18  | CNIEB15 | CNIEB14 | CNIEB13 | CNIEB12 | CNIEB11 | CNIEB10 | CNIEB9 | CNIEB8 | CNIEB7 | CNIEB6 | CNIEB5 | CNIEB4 | CNIEB3 | CNIEB2 | CNIEB1 | CNIEB0 | 0000          |
| CNPUB        | 0E1A  | CNPUB15 | CNPUB14 | CNPUB13 | CNPUB12 | CNPUB11 | CNPUB10 | CNPUB9 | CNPUB8 | CNPUB7 | CNPUB6 | CNPUB5 | CNPUB4 | CNPUB3 | CNPUB2 | CNPUB1 | CNPUB0 | 0000          |
| CNPDB        | 0E1C  | CNPDB15 | CNPDB14 | CNPDB13 | CNPDB12 | CNPDB11 | CNPDB10 | CNPDB9 | CNPDB8 | CNPDB7 | CNPDB6 | CNPDB5 | CNPDB4 | CNPDB3 | CNPDB2 | CNPDB1 | CNPDB0 | 0000          |
| ANSELB       | 0E1E  |         |         | _       | -       | —       | —       | —      | ANSB8  |        | _      | —      |        | ANSB3  | ANSB2  | ANSB1  | ANSB0  | 010F          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## 6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

| R/W-0                | R/W-0                   | R/W-0                | R/W-0 | R/C-0 | R/C-0 | R-0   | R/W-0 |   |
|----------------------|-------------------------|----------------------|-------|-------|-------|-------|-------|---|
| OA                   | OB                      | SA                   | SB    | OAB   | SAB   | DA    | DC    |   |
| bit 15               |                         |                      |       |       |       |       | bit 8 |   |
|                      |                         |                      |       |       |       |       |       |   |
| R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup>    | R/W-0 <sup>(3)</sup> | R-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0 |   |
|                      | IPL<2:0> <sup>(2)</sup> |                      | RA    | Ν     | OV    | Z     | С     |   |
| bit 7                |                         |                      |       |       |       | -     | bit 0 |   |
|                      |                         |                      |       |       |       |       |       |   |
|                      |                         |                      |       |       |       |       |       | 1 |

# REGISTER 7-1: SR: CPU STATUS REGISTER<sup>(1)</sup>

| Legend:           | C = Clearable bit |                             | -                  |
|-------------------|-------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1'= Bit is set   | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7-5 | IPL<2:0>: CPU Interrupt Priority Level Status bits <sup>(2,3)</sup>        |
|---------|----------------------------------------------------------------------------|
|         | 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled |
|         | 110 = CPU Interrupt Priority Level is 6 (14)                               |
|         | 101 = CPU Interrupt Priority Level is 5 (13)                               |
|         | 100 = CPU Interrupt Priority Level is 4 (12)                               |
|         | 011 = CPU Interrupt Priority Level is 3 (11)                               |
|         | 010 = CPU Interrupt Priority Level is 2 (10)                               |
|         | 001 = CPU Interrupt Priority Level is 1 (9)                                |
|         | 000 = CPU Interrupt Priority Level is 0 (8)                                |

- **Note 1:** For complete register details, see Register 3-1.
  - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
  - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

# **10.0 POWER-SAVING FEATURES**

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

## EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

| PWRSAV | #SLEEP_MODE | ; | Put | the | device | into | Sleep mode |
|--------|-------------|---|-----|-----|--------|------|------------|
| PWRSAV | #IDLE_MODE  | ; | Put | the | device | into | Idle mode  |

## 10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

## 10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

**Note:** SLEEP\_MODE and IDLE\_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

## 11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

#### FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn



## 11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

## TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

| Function                | RPxR<5:0> | Output Name                                   |
|-------------------------|-----------|-----------------------------------------------|
| Default PORT            | 000000    | RPn tied to Default Pin                       |
| U1TX                    | 000001    | RPn tied to UART1 Transmit                    |
| U2TX                    | 000011    | RPn tied to UART2 Transmit                    |
| SDO2                    | 001000    | RPn tied to SPI2 Data Output                  |
| SCK2                    | 001001    | RPn tied to SPI2 Clock Output                 |
| SS2                     | 001010    | RPn tied to SPI2 Slave Select                 |
| C1TX <sup>(2)</sup>     | 001110    | RPn tied to CAN1 Transmit                     |
| OC1                     | 010000    | RPn tied to Output Compare 1 Output           |
| OC2                     | 010001    | RPn tied to Output Compare 2 Output           |
| OC3                     | 010010    | RPn tied to Output Compare 3 Output           |
| OC4                     | 010011    | RPn tied to Output Compare 4 Output           |
| C1OUT                   | 011000    | RPn tied to Comparator Output 1               |
| C2OUT                   | 011001    | RPn tied to Comparator Output 2               |
| C3OUT                   | 011010    | RPn tied to Comparator Output 3               |
| SYNCO1 <sup>(1)</sup>   | 101101    | RPn tied to PWM Primary Time Base Sync Output |
| QEI1CCMP <sup>(1)</sup> | 101111    | RPn tied to QEI 1 Counter Comparator Output   |
| REFCLKO                 | 110001    | RPn tied to Reference Clock Output            |
| C4OUT                   | 110010    | RPn tied to Comparator Output 4               |

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0     | U-0   | U-0   | U-0   | U-0        | U-0   | U-0   | U-0   |
|---------|-------|-------|-------|------------|-------|-------|-------|
| —       | —     |       | _     | _          | —     | _     | —     |
| bit 15  |       |       |       |            |       |       | bit 8 |
|         |       |       |       |            |       |       |       |
| U-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0      | R/W-0 | R/W-0 | R/W-0 |
| —       |       |       |       | OCFAR<6:0> | >     |       |       |
| bit 7   | -     |       |       |            |       |       | bit 0 |
|         |       |       |       |            |       |       |       |
| Legend: |       |       |       |            |       |       |       |

## REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-7 Unimplemented: Read as '0'

bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss



#### FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0                               | U-0   | U-0              | U-0                                | R/W-0                                   | R/W-0 | R/W-0  | R/W-0 |
|-----------------------------------|-------|------------------|------------------------------------|-----------------------------------------|-------|--------|-------|
| —                                 | —     | —                | _                                  |                                         | LEB   | <11:8> |       |
| bit 15                            |       |                  |                                    |                                         |       |        | bit 8 |
|                                   |       |                  |                                    |                                         |       |        |       |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                                   | R/W-0 | R/W-0  | R/W-0 |
|                                   |       |                  | LEE                                | 3<7:0>                                  |       |        |       |
| bit 7                             |       |                  |                                    |                                         |       |        | bit 0 |
|                                   |       |                  |                                    |                                         |       |        |       |
| Legend:                           |       |                  |                                    |                                         |       |        |       |
| R = Readable bit W = Writable bit |       |                  | U = Unimplemented bit, read as '0' |                                         |       |        |       |
| -n = Value at F                   | POR   | '1' = Bit is set |                                    | '0' = Bit is cleared x = Bit is unknown |       |        | nown  |
|                                   |       |                  |                                    |                                         |       |        |       |
|                                   |       |                  |                                    |                                         |       |        |       |

# REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

| R/W-0                         | R/W-0                                                           | R/W-0                                                       | R/W-0                             | R/W-0                                                                                        | R/W-0                    | R/W-0         | R/W-0 |
|-------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|--------------------------|---------------|-------|
| QCAPEN                        | FLTREN                                                          | QFDIV2                                                      | QFDIV1                            | QFDIV0                                                                                       | OUTFNC1                  | OUTFNC0       | SWPAB |
| bit 15                        |                                                                 |                                                             |                                   |                                                                                              | •<br>•                   |               | bit 8 |
|                               |                                                                 |                                                             |                                   |                                                                                              |                          |               |       |
| R/W-0                         | R/W-0                                                           | R/W-0                                                       | R/W-0                             | R-x                                                                                          | R-x                      | R-x           | R-x   |
| HOMPOL                        | IDXPOL                                                          | QEBPOL                                                      | QEAPOL                            | HOME                                                                                         | INDEX                    | QEB           | QEA   |
| bit 7                         |                                                                 |                                                             |                                   |                                                                                              |                          |               | bit 0 |
|                               |                                                                 |                                                             |                                   |                                                                                              |                          |               |       |
| Legena:                       | a hit                                                           | \// = \//ritabla                                            | h it                              | II – Unimplor                                                                                | monted hit read          |               |       |
| $R = Reauable}{n = Value at}$ |                                                                 | $41^{\circ}$ = Rit is set                                   | DIL                               | 0 = 0 minipler                                                                               | nented bit, read         | v – Piticunkn | 0.000 |
| -II - Value at                | TOIX                                                            | 1 - Dit 13 36t                                              |                                   |                                                                                              | areu                     |               |       |
| bit 15                        | OCAPEN: OF                                                      | -I Position Cou                                             | nter Input Cap                    | ture Enable bit                                                                              |                          |               |       |
|                               | 1 = Index mat                                                   | tch event trigge                                            | ers a position c                  | apture event                                                                                 |                          |               |       |
|                               | 0 = Index mat                                                   | tch event does                                              | not trigger a p                   | osition capture                                                                              | event                    |               |       |
| bit 14                        | FLTREN: QE                                                      | Ax/QEBx/INDX                                                | x/HOMEx Digi                      | tal Filter Enabl                                                                             | e bit                    |               |       |
|                               | 1 = Input pin o                                                 | digital filter is en<br>digital filter is di                | nabled                            | aad)                                                                                         |                          |               |       |
| hit 12 11                     |                                                                 |                                                             | NDVy/UOMEy                        | Digital Input Ei                                                                             | iltor Clock Divid        | a Salact hits |       |
| DIL 13-11                     | 111 = 1.128 c                                                   | clock divide                                                |                                   | Digital Input Fi                                                                             |                          |               |       |
|                               | 110 = 1:64 cl                                                   | ock divide                                                  |                                   |                                                                                              |                          |               |       |
|                               | 101 = 1:32 clo                                                  | ock divide                                                  |                                   |                                                                                              |                          |               |       |
|                               | 100 = 1:16 clo                                                  | ock divide                                                  |                                   |                                                                                              |                          |               |       |
|                               | 011 = 1.8  cloc<br>010 = 1:4  cloc                              | ck divide                                                   |                                   |                                                                                              |                          |               |       |
|                               | 001 = 1:2 clos                                                  | ck divide                                                   |                                   |                                                                                              |                          |               |       |
|                               | 000 = 1:1 clo                                                   | ck divide                                                   |                                   |                                                                                              |                          |               |       |
| bit 10-9                      | OUTFNC<1:0                                                      | >: QEI Module                                               | Output Functi                     | on Mode Selec                                                                                | ct bits                  |               |       |
|                               | 11 = The CTN<br>10 = The CTN                                    | NCMPx pin goe                                               | s high when Q<br>s high when P    | $ E 1LEC \ge POS \\  OS1CNT < OF   C   \\  OS1CNT =  C  C  C  C  C  C  C  C  C  C  C  C  C $ | S1CNT ≥ QEI10<br>-I11 FC | JEC           |       |
|                               | 01 = The CTN                                                    | VCMPx pin goe                                               | s high when P                     | $OS1CNT \ge QE$                                                                              | EI1GEC                   |               |       |
|                               | 00 = Output is                                                  | s disabled                                                  |                                   |                                                                                              |                          |               |       |
| bit 8                         | SWPAB: Swa                                                      | ap QEA and QE                                               | B Inputs bit                      |                                                                                              |                          |               |       |
|                               | 1 = QEAx and<br>0 = OEAx and                                    | d QEBx are swa<br>d OEBx are not                            | apped prior to swapped            | quadrature dec                                                                               | coder logic              |               |       |
| bit 7                         |                                                                 | OMEx Input Po                                               | larity Select bit                 | ł                                                                                            |                          |               |       |
|                               | 1 = Input is in                                                 | verted                                                      |                                   |                                                                                              |                          |               |       |
|                               | 0 = Input is no                                                 | ot inverted                                                 |                                   |                                                                                              |                          |               |       |
| bit 6                         | IDXPOL: IND                                                     | Xx Input Polari                                             | ty Select bit                     |                                                                                              |                          |               |       |
|                               | 1 = Input is in                                                 | verted                                                      |                                   |                                                                                              |                          |               |       |
|                               |                                                                 | ot inverted                                                 |                                   |                                                                                              |                          |               |       |
| DIT 5                         | QEBPOL: QE                                                      | EBX Input Polar                                             | ity Select bit                    |                                                                                              |                          |               |       |
|                               | 0 = Input is in                                                 | ot inverted                                                 |                                   |                                                                                              |                          |               |       |
|                               |                                                                 |                                                             |                                   |                                                                                              |                          |               |       |
| bit 4                         | QEAPOL: QE                                                      | Ax Input Polar                                              | ity Select bit                    |                                                                                              |                          |               |       |
| bit 4                         | <b>QEAPOL:</b> QE<br>1 = Input is in                            | EAx Input Polar                                             | ity Select bit                    |                                                                                              |                          |               |       |
| bit 4                         | <b>QEAPOL:</b> QE<br>1 = Input is ir<br>0 = Input is n          | EAx Input Polar<br>overted<br>ot inverted                   | ity Select bit                    |                                                                                              |                          |               |       |
| bit 4<br>bit 3                | QEAPOL: QE<br>1 = Input is ir<br>0 = Input is n<br>HOME: Status | EAx Input Polar<br>nverted<br>ot inverted<br>s of HOMEx Inp | ity Select bit<br>out Pin After P | olarity Control                                                                              |                          |               |       |

# REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

## 18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
  - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
  - b) If FRMPOL = 0, use a pull-up resistor on  $\frac{1}{SSx}$ .

| Note: | This         | insures | that  | the            | first | fra | ame |
|-------|--------------|---------|-------|----------------|-------|-----|-----|
|       | transmission |         | after | initialization |       | is  | not |
|       | shifted      |         |       |                |       |     |     |

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
  - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
  - b) If CKP = 0, always place a pull-down resistor on SSx.
  - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
  - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

## 18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

## 18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

| DC CHARACTERISTICS |        |                                                             | $\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |      |       |                                                                                                                                                                        |  |
|--------------------|--------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Param.             | Symbol | Characteristic                                              | Min.                                                                                                                                                                                                                                                                                                        | Тур. | Max. | Units | Conditions                                                                                                                                                             |  |
| DO10               | Vol    | Output Low Voltage<br>4x Sink Driver Pins <sup>(2)</sup>    |                                                                                                                                                                                                                                                                                                             | —    | 0.4  | V     | VDD = 3.3V,<br>$IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$<br>$IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$ |  |
|                    |        | Output Low Voltage<br>8x Sink Driver Pins <sup>(3)</sup>    |                                                                                                                                                                                                                                                                                                             | —    | 0.4  | V     |                                                                                                                                                                        |  |
| DO20               | Vон    | Output High Voltage<br>4x Source Driver Pins <sup>(2)</sup> | 2.4                                                                                                                                                                                                                                                                                                         | _    | _    | V     | $IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$                                                                                                                  |  |
|                    |        | Output High Voltage<br>8x Source Driver Pins <sup>(3)</sup> | 2.4                                                                                                                                                                                                                                                                                                         | _    | —    | V     | $IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$                                                                                                                  |  |
| DO20A              | Von1   | Output High Voltage<br>4x Source Driver Pins <sup>(2)</sup> | 1.5 <sup>(1)</sup>                                                                                                                                                                                                                                                                                          | _    |      | V     | $IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$                                                                                                                   |  |
|                    |        |                                                             | 2.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                                          | _    |      |       | $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$                                                                                                                   |  |
|                    |        |                                                             | 3.0(1)                                                                                                                                                                                                                                                                                                      | —    | —    |       | $IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$                                                                                                                    |  |
|                    |        | Output High Voltage                                         | 1.5 <sup>(1)</sup>                                                                                                                                                                                                                                                                                          | _    |      | V     | $IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$                                                                                                                   |  |
|                    |        | 8x Source Driver Pins                                       | 2.0 <sup>(1)</sup>                                                                                                                                                                                                                                                                                          | —    | _    |       | $IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$                                                                                                                  |  |
|                    |        |                                                             | 3.0(1)                                                                                                                                                                                                                                                                                                      | —    | —    |       | $IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$                                                                                                                   |  |

## TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

## TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

| DC CHARACTERISTICS |        |                                            | $ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \end{array} $ |      |      |       |                        |  |
|--------------------|--------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|------------------------|--|
| Param<br>No.       | Symbol | Characteristic                             | Min. <sup>(2)</sup>                                                                                                                                                                                                                                                                          | Тур. | Max. | Units | Conditions             |  |
| BO10               | VBOR   | BOR Event on VDD Transition<br>High-to-Low | 2.65                                                                                                                                                                                                                                                                                         | _    | 2.95 | V     | VDD<br>(Notes 2 and 3) |  |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

**2:** Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.



## FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

## TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

| AC CHARACTERISTICS |        |                | $ \begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $ |      |      |       |            |
|--------------------|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|------------|
| Param.             | Symbol | Characteristic | Min.                                                                                                                                                                                                                                                                                                  | Тур. | Max. | Units | Conditions |
| VR310              | TSET   | Settling Time  | _                                                                                                                                                                                                                                                                                                     | 1    | 10   | μS    | (Note 1)   |

**Note 1:** Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

#### TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

| DC CHARACTERISTICS |        |                                            | $\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |            |            |     |               |  |
|--------------------|--------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----|---------------|--|
| Param<br>No.       | Symbol | Characteristics                            | Min.                                                                                                                                                                                                                                                                                                 | Conditions |            |     |               |  |
| VRD310             | CVRES  | Resolution                                 | CVRSRC/24                                                                                                                                                                                                                                                                                            | _          | CVRSRC/32  | LSb |               |  |
| VRD311             | CVRAA  | Absolute Accuracy <sup>(2)</sup>           | —                                                                                                                                                                                                                                                                                                    | ±25        | —          | mV  | CVRSRC = 3.3V |  |
| VRD313             | CVRSRC | Input Reference Voltage                    | 0                                                                                                                                                                                                                                                                                                    | _          | AVDD + 0.3 | V   |               |  |
| VRD314             | CVROUT | Buffer Output<br>Resistance <sup>(2)</sup> | _                                                                                                                                                                                                                                                                                                    | 1.5k       | _          | Ω   |               |  |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.



Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V



-40 -30 -20 -10

0 10 20 30 40 50 60

**FIGURE 32-9:**