

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp504-h-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
C1IN1-	Ι	Analog	No	Op Amp/Comparator 1 Negative Input 1.
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.
OA1OUT	0	Analog	No	Op Amp 1 output.
C10UT	0		Yes	Comparator 1 output.
C2IN1-	Ι	Analog	No	Op Amp/Comparator 2 Negative Input 1.
C2IN2-	I.	Analog	No	Comparator 2 Negative Input 2.
C2IN1+	I.	Analog	No	Op Amp/Comparator 2 Positive Input 1.
OA2OUT	0	Analog	No	Op Amp 2 output.
C2OUT	0	—	Yes	Comparator 2 output.
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.
OA3OUT	0	Analog	No	Op Amp 3 output.
C3OUT	0		Yes	Comparator 3 output.
C4IN1-	I	Analog	No	Comparator 4 Negative Input 1.
C4IN1+	I	Analog	No	Comparator 4 Positive Input 1.
C4OUT	0	—	Yes	Comparator 4 output.
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2		SI	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	1/0	SI	NO	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	1	51	NO	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.
VCAP	Р		No	CPU logic filter capacitor connection.
Vss	Р		No	Ground reference for logic and I/O pins.
VREF+	Ι	Analog	No	Analog voltage reference (high) input.
VREF-	Ι	Analog	No	Analog voltage reference (low) input.
Legend: CMOS = C	MOS co	ompatible	e input	or output Analog = Analog input P = Power
ST = Schmi	tt Trigg	jer input v	with Cl	MOS levels O = Output I = Input

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	—	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	—	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808		_	CTMUIF	_	—	_	—	_	_	_	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	_	—	_	_	_	_	_	_	_	_	_	—		0000
IFS6	080C	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	—	—	—	_	_	_	_	_	_	_	_		0000
IFS9	0812		_	—	_	—	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824		_	—	_	_	—	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826		_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828		_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC6	082C		_	_	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC9	0832		_	_	_	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840			T1IP<2:0>	`	_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842			T2IP<2:0>	•	_		OC2IP<2:0)>	_		IC2IP<2:0>		_	[OMA0IP<2:0>		4444
IPC2	0844			U1RXIP<2:	0>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	DMA1IP<2:	0>	_		AD1IP<2:0>	•	_		J1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0	>	_		MI2C1IP<2:0	>	_	9	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	, ,	_		OC4IP<2:0)>	_		OC3IP<2:0>	>	_	[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0)>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850		_	_	_	_	(C1RXIP<2:	0>	_		SPI2IP<2:0	>	_	5	SPI2EIP<2:0>		0444
IPC9	0852		_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	[DMA3IP<2:0>		0444
IPC12	0858		_	_	_	_	N	/II2C2IP<2:	:0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC14	085C		_	_	_	_		QEI1IP<2:)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>	>	_	_	_	_	4440
IPC19	0866	_	_	—	_	_	_		_	_		CTMUIP<2:0	>	_	_	_		0040
IPC23	086E	_		PWM2IP<2:	0>	_	F	WM1IP<2	:0>	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

TABLE 4-20: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		ADC1 Data Buffer 0								xxxx							
ADC1BUF1	0302								ADC1 Data B	uffer 1								xxxx
ADC1BUF2	0304								ADC1 Data B	uffer 2								xxxx
ADC1BUF3	0306								ADC1 Data B	uffer 3								xxxx
ADC1BUF4	0308								ADC1 Data B	uffer 4								xxxx
ADC1BUF5	030A								ADC1 Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC1 Data B	uffer 6								xxxx
ADC1BUF7	030E								ADC1 Data B	uffer 7								xxxx
ADC1BUF8	0310								ADC1 Data B	uffer 8								xxxx
ADC1BUF9	0312								ADC1 Data B	uffer 9								xxxx
ADC1BUFA	0314								ADC1 Data Bu	uffer 10								xxxx
ADC1BUFB	0316								ADC1 Data Bu	uffer 11								xxxx
ADC1BUFC	0318								ADC1 Data Bu	uffer 12								xxxx
ADC1BUFD	031A								ADC1 Data Bu	uffer 13								xxxx
ADC1BUFE	031C								ADC1 Data Bu	uffer 14								xxxx
ADC1BUFF	031E								ADC1 Data Bu	uffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>		SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	·	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:0>	>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—		-	SAMC<4:0	>	_		-	-	ADCS	<7:0>				0000
AD1CHS123	0326	_	—	—	—	·	CH123N	NB<1:0>	CH123SB	_	—		—	—	CH123N	A<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		-	CH0SB<4:0	>	_	CH0NA	—			C	H0SA<4:0	>		0000
AD1CSSH	032E	CSS31	CSS30	—	—		CSS26	CSS25	CSS24	_			—	—	—	—	—	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	DMABL<2:0> 000															

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
PMD7	076C		_			_		_		_	_		DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	—	_	—	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	—	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	—	_	—	_	_	_	0000
													DMA0MD					
	0760												DMA1MD	DTOMD				
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
												DMA3MD]					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			CNT<	13:8> (2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT≪	<7:0> (2)			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSE	-<4:0>: Trigger/Synchronization Source Selection bits
	11111 =	OCxRS compare event is used for synchronization
	11110 =	INT2 pin synchronizes or triggers OCx
	11101 =	INT1 pin synchronizes or triggers OCx
	11100 =	CTMU module synchronizes or triggers OCx
	11011 =	ADC1 module synchronizes or triggers OCx
	11010 =	CMP3 module synchronizes or triggers OCx
	11001 =	CMP2 module synchronizes or triggers OCx
	11000 =	CMP1 module synchronizes or triggers OCx
	10111 =	Reserved
	10110 =	Reserved
	10101 =	Reserved
	10100 =	Reserved
	10011 =	IC4 input capture event synchronizes or triggers OCx
	10010 =	IC3 input capture event synchronizes or triggers OCx
	10001 =	IC2 input capture event synchronizes or triggers OCx
	10000 =	IC1 input capture event synchronizes or triggers OCx
	01111 =	Timer5 synchronizes or triggers OCx
	01110 =	Timer4 synchronizes or triggers OCx
	01101 =	Timer3 synchronizes or triggers OCx
	01100 =	Timer2 synchronizes or triggers OCx (default)
	01011 =	Timer1 synchronizes or triggers OCx
	01010 =	PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 =	Reserved
	01000 =	Reserved
	00111 =	Reserved
	00110 =	Reserved
	00101 =	Reserved
	00100 =	OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 =	OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 =	OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 =	OC1 module synchronizes or triggers OCx ^(1,2)
	00000 =	No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		0.0 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ¹³
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		When Set to '0':
		If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
QEILEC<31:24>										
bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	QEILEC<23:16>									
bit 7	bit 7 bit 0									
Legend:										
R = Readable bit W = Writable bit U				U = Unimplen	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				

bit 15-0 QEILEC<31:16>: High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEILEC<15:8>									
bit 15	bit 15 bit								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIL	EC<7:0>					
bit 7	bit 7 bit						bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	—	_	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
			_		—	FRMDLY	SPIBEN		
bit 7	bit 7 bit C								
Legend:									
R = Readable	e bit	W = Writable I	bit	U = Unimplei	mented bit, reac	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown			
bit 15	FRMEN: Fran	med SPIx Supp	ort bit						
	1 = Framed S 0 = Framed S	 1 = Framed SPIx support is enabled (SSx pin is used as Frame Sync pulse input/output) 0 = Framed SPIx support is disabled 							
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit					
	1 = Frame Sy 0 = Frame Sy	/nc pulse input (/nc pulse outpu	(slave) t (master)						
bit 13	FRMPOL: Fra	ame Sync Pulse	e Polarity bit						
	1 = Frame Sy	/nc pulse is acti	ve-high						
	0 = Frame Sy	/nc pulse is acti	ve-low						
bit 12-2	Unimplemen	ted: Read as 'o)'						
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit								
	1 = Frame Sy 0 = Frame Sy	/nc pulse coinci /nc pulse prece	des with first des first bit cl	bit clock ock					
bit 0	bit 0 SPIBEN: Enhanced Buffer Enable bit								
	1 = Enhanced buffer is enabled 0 = Enhanced buffer is disabled (Standard mode)								

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS Wb,Ws,Wnd		{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
1		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 Tcy	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period	3 Tcy	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)