

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 60 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                           |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                        |
| Number of I/O              | 35                                                                                |
| Program Memory Size        | 256KB (85.5K x 24)                                                                |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 16K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 9x10b/12b                                                                     |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 44-TQFP                                                                           |
| Supplier Device Package    | 44-TQFP (10x10)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp504t-e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual", which is available from the Microchip web site (www.microchip.com)
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

# 2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

# 2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1  $\mu$ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of  $0.01 \ \mu\text{F}$  to  $0.001 \ \mu\text{F}$ . Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example,  $0.1 \ \mu\text{F}$  in parallel with  $0.001 \ \mu\text{F}$ .
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.





| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9      | Bit 8  | Bit 7 | Bit 6  | Bit 5       | Bit 4         | Bit 3  | Bit 2    | Bit 1        | Bit 0         | All<br>Resets |
|--------------|-------|--------|--------|------------|--------|--------|--------|------------|--------|-------|--------|-------------|---------------|--------|----------|--------------|---------------|---------------|
| IFS0         | 0800  | —      | DMA1IF | AD1IF      | U1TXIF | U1RXIF | SPI1IF | SPI1EIF    | T3IF   | T2IF  | OC2IF  | IC2IF       | DMA0IF        | T1IF   | OC1IF    | IC1IF        | <b>INT0IF</b> | 0000          |
| IFS1         | 0802  | U2TXIF | U2RXIF | INT2IF     | T5IF   | T4IF   | OC4IF  | OC3IF      | DMA2IF | _     | —      | —           | INT1IF        | CNIF   | CMIF     | MI2C1IF      | SI2C1IF       | 0000          |
| IFS2         | 0804  | —      | —      |            | —      |        | _      | —          | —      | -     | IC4IF  | IC3IF       | DMA3IF        | C1IF   | C1RXIF   | SPI2IF       | SPI2EIF       | 0000          |
| IFS3         | 0806  | —      | _      |            | —      |        | QEI1IF | PSEMIF     | —      |       | —      |             | —             |        | MI2C2IF  | SI2C2IF      |               | 0000          |
| IFS4         | 0808  | _      | _      | CTMUIF     | _      |        | —      | _          | _      |       | C1TXIF |             | _             | CRCIF  | U2EIF    | U1EIF        |               | 0000          |
| IFS5         | 080A  | PWM2IF | PWM1IF | —          | —      | —      | —      | —          | —      | _     | —      | —           | —             | _      | —        | —            | _             | 0000          |
| IFS6         | 080C  | —      | —      | —          | —      | —      | —      | —          | —      | _     | —      | —           | —             | _      | —        | —            | PWM3IF        | 0000          |
| IFS8         | 0810  | JTAGIF | ICDIF  |            | _      |        | —      | _          | _      |       | _      |             | _             |        | —        | —            |               | 0000          |
| IFS9         | 0812  | _      | _      |            | _      |        | —      | _          | _      |       | PTG3IF | PTG2IF      | PTG1IF        | PTG0IF | PTGWDTIF | PTGSTEPIF    |               | 0000          |
| IEC0         | 0820  | —      | DMA1IE | AD1IE      | U1TXIE | U1RXIE | SPI1IE | SPI1EIE    | T3IE   | T2IE  | OC2IE  | IC2IE       | DMA0IE        | T1IE   | OC1IE    | IC1IE        | INT0IE        | 0000          |
| IEC1         | 0822  | U2TXIE | U2RXIE | INT2IE     | T5IE   | T4IE   | OC4IE  | OC3IE      | DMA2IE | _     | —      | —           | INT1IE        | CNIE   | CMIE     | MI2C1IE      | SI2C1IE       | 0000          |
| IEC2         | 0824  | —      | —      | —          | —      | —      | —      | —          | —      | _     | IC4IE  | IC3IE       | <b>DMA3IE</b> | C1IE   | C1RXIE   | SPI2IE       | SPI2EIE       | 0000          |
| IEC3         | 0826  | —      | —      | —          | —      | —      | QEI1IE | PSEMIE     | —      | _     | —      | —           | —             | _      | MI2C2IE  | SI2C2IE      | _             | 0000          |
| IEC4         | 0828  | —      | —      | CTMUIE     | —      | —      | —      | —          | —      | _     | C1TXIE | —           | —             | CRCIE  | U2EIE    | U1EIE        | _             | 0000          |
| IEC5         | 082A  | PWM2IE | PWM1IE | _          | —      | _      | —      | —          | —      | _     | —      | _           | —             | _      | _        | —            | _             | 0000          |
| IEC6         | 082C  | —      | —      | _          | —      | _      | —      | —          | —      | _     | —      | _           | —             | _      | _        | —            | PWM3IE        | 0000          |
| IEC7         | 082E  | —      | —      | _          | —      | _      | —      | —          | —      | _     | —      | _           | —             | _      | —        | —            | _             | 0000          |
| IEC8         | 0830  | JTAGIE | ICDIE  | _          | —      | _      | —      | —          | —      | _     | —      | _           | —             | _      | —        | —            | _             | 0000          |
| IEC9         | 0832  | —      | —      | _          | —      | _      | —      |            | —      | _     | PTG3IE | PTG2IE      | PTG1IE        | PTG0IE | PTGWDTIE | PTGSTEPIE    | _             | 0000          |
| IPC0         | 0840  | —      |        | T1IP<2:0>  |        | _      |        | OC1IP<2:0  | )>     | _     |        | IC1IP<2:0>  |               | _      |          | INT0IP<2:0>  |               | 4444          |
| IPC1         | 0842  | —      |        | T2IP<2:0>  |        | _      |        | OC2IP<2:0  | )>     | _     |        | IC2IP<2:0>  |               | _      | 1        | DMA0IP<2:0>  |               | 4444          |
| IPC2         | 0844  | —      |        | U1RXIP<2:0 | )>     | _      |        | SPI1IP<2:0 | )>     | _     |        | SPI1EIP<2:0 | >             | _      |          | T3IP<2:0>    |               | 4444          |
| IPC3         | 0846  | —      | —      | _          | —      | _      | 0      | )MA1IP<2:  | 0>     | _     |        | AD1IP<2:0>  |               | _      |          | U1TXIP<2:0>  |               | 0444          |
| IPC4         | 0848  |        |        | CNIP<2:0>  |        | _      |        | CMIP<2:0   | >      |       |        | MI2C1IP<2:0 | >             | _      | :        | SI2C1IP<2:0> |               | 4444          |
| IPC5         | 084A  | —      | —      | _          | —      | _      | —      |            | —      | _     | —      | _           | —             | _      |          | INT1IP<2:0>  |               | 0004          |
| IPC6         | 084C  | —      |        | T4IP<2:0>  |        | _      |        | OC4IP<2:0  | )>     | _     |        | OC3IP<2:0>  |               | _      | 1        | DMA2IP<2:0>  |               | 4444          |
| IPC7         | 084E  | —      |        | U2TXIP<2:0 | >      | _      | ι      | J2RXIP<2:( | 0>     | _     |        | INT2IP<2:0> |               | _      |          | T5IP<2:0>    |               | 4444          |
| IPC8         | 0850  | —      |        | C1IP<2:0>  | -      | _      | 0      | C1RXIP<2:( | 0>     | _     |        | SPI2IP<2:0> |               | _      |          | SPI2EIP<2:0> |               | 4444          |
| IPC9         | 0852  | —      | —      | _          | —      | _      |        | IC4IP<2:0  | >      | _     |        | IC3IP<2:0>  |               | _      | 1        | DMA3IP<2:0>  |               | 0444          |
| IPC12        | 0858  | —      | —      | _          | —      | _      | N      | 112C2IP<2: | 0>     | _     |        | SI2C2IP<2:0 | >             | _      | —        | —            | _             | 0440          |
| IPC14        | 085C  | —      | _      | —          | —      | —      | (      | QEI1IP<2:0 | )>     | _     |        | PSEMIP<2:0  | >             | —      | —        | —            | —             | 0440          |
| IPC16        | 0860  | _      |        | CRCIP<2:0  | >      | _      |        | U2EIP<2:0  | >      | _     |        | U1EIP<2:0>  |               | _      | _        | _            | _             | 4440          |
| IPC17        | 0862  | _      | —      | _          | —      | _      | (      | C1TXIP<2:0 | 0>     | _     | —      | —           | —             | _      | _        | _            | _             | 0400          |
| IPC19        | 0866  | —      | —      | _          | —      | _      | —      | —          | —      | _     |        | CTMUIP<2:0  | >             | _      | —        | —            | —             | 0040          |

### TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

# 4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

### 4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

| Note: | Y space Modulo Addressing EA calcula- |
|-------|---------------------------------------|
|       | tions assume word-sized data (LSb of  |
|       | every EA is always clear).            |

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

#### 4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.



### FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

## 6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0                                                                  | U-0   | U-0              | U-0   | U-0              | U-0   | U-0             | U-0   |
|----------------------------------------------------------------------|-------|------------------|-------|------------------|-------|-----------------|-------|
| —                                                                    | —     | —                | —     | —                | —     | —               | —     |
| bit 15                                                               |       |                  |       |                  |       |                 | bit 8 |
|                                                                      |       |                  |       |                  |       |                 |       |
| R/W-0                                                                | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0 | R/W-0           | R/W-0 |
|                                                                      |       |                  | STB<  | 23:16>           |       |                 |       |
| bit 7                                                                |       |                  |       |                  |       |                 | bit 0 |
|                                                                      |       |                  |       |                  |       |                 |       |
| Legend:                                                              |       |                  |       |                  |       |                 |       |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |                  |       |                  |       |                 |       |
| -n = Value at P                                                      | OR    | '1' = Bit is set |       | '0' = Bit is cle | eared | x = Bit is unkr | nown  |

#### REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Secondary Start Address bits (source or destination)

#### REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|-----------------|-------|------------------|-------|------------------|-----------------|-----------------|-------|
|                 |       |                  | STE   | <15:8>           |                 |                 |       |
| bit 15          |       |                  |       |                  |                 |                 | bit 8 |
|                 |       |                  |       |                  |                 |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|                 |       |                  | ST    | 3<7:0>           |                 |                 |       |
| bit 7           |       |                  |       |                  |                 |                 | bit 0 |
|                 |       |                  |       |                  |                 |                 |       |
| Legend:         |       |                  |       |                  |                 |                 |       |
| R = Readable    | bit   | W = Writable b   | oit   | U = Unimpler     | mented bit, rea | id as '0'       |       |
| -n = Value at F | POR   | '1' = Bit is set |       | '0' = Bit is cle | ared            | x = Bit is unkr | nown  |

bit 15-0 **STB<15:0>:** Secondary Start Address bits (source or destination)

#### 10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

#### 10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

#### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

### REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

| U-0                | R/W-0                     | R/W-0                                           | R/W-0                            | R/W-0                     | R/W-0           | R/W-0           | R/W-0 |
|--------------------|---------------------------|-------------------------------------------------|----------------------------------|---------------------------|-----------------|-----------------|-------|
| —                  |                           |                                                 |                                  | HOME1R<6:0                | >               |                 |       |
| bit 15             |                           |                                                 |                                  |                           |                 |                 | bit 8 |
|                    |                           |                                                 |                                  |                           |                 |                 |       |
| U-0                | R/W-0                     | R/W-0                                           | R/W-0                            | R/W-0                     | R/W-0           | R/W-0           | R/W-0 |
| —                  |                           |                                                 |                                  | INDX1R<6:0>               | >               |                 |       |
| bit 7              |                           |                                                 |                                  |                           |                 |                 | bit 0 |
|                    |                           |                                                 |                                  |                           |                 |                 |       |
| Legend:            |                           |                                                 |                                  |                           |                 |                 |       |
| R = Readab         | ole bit                   | W = Writable                                    | bit                              | U = Unimplen              | nented bit, rea | ad as '0'       |       |
| -n = Value a       | at POR                    | '1' = Bit is set                                |                                  | '0' = Bit is cle          | ared            | x = Bit is unkr | nown  |
| bit 15             | Unimpleme                 | ented: Read as '                                | 0'                               |                           |                 |                 |       |
| bit 15<br>bit 14-8 | HOME1R<6                  | 5:0>: Assign QEI                                | 0<br>1 HOME1 (H<br>selection nun | OME1) to the C            | Corresponding   | RPn Pin bits    |       |
|                    | 1111001 =                 | Input tied to RPI                               | 121                              | ,                         |                 |                 |       |
|                    |                           |                                                 |                                  |                           |                 |                 |       |
|                    |                           |                                                 |                                  |                           |                 |                 |       |
|                    |                           | Input tied to CM                                | D1                               |                           |                 |                 |       |
|                    | 0000000 =                 | Input tied to Vss                               | ;                                |                           |                 |                 |       |
| bit 7              | Unimpleme                 | ented: Read as '                                | 0'                               |                           |                 |                 |       |
| bit 6-0            | IND1XR<6:<br>(see Table 2 | <b>0&gt;:</b> Assign QEI1<br>I1-2 for input pin | INDEX1 (INE selection nun        | 0X1) to the Cor<br>nbers) | responding R    | Pn Pin bits     |       |
|                    | 1111001 =                 | Input tied to RPI                               | 121                              | ,                         |                 |                 |       |
|                    |                           |                                                 |                                  |                           |                 |                 |       |
|                    | •                         |                                                 |                                  |                           |                 |                 |       |
|                    | 0000001 =                 | Input tied to CM                                | P1                               |                           |                 |                 |       |
|                    | 0000000 =                 | Input tied to Vss                               |                                  |                           |                 |                 |       |

# 12.2 Timer1 Control Register

| R/W-0              | U-0                                      | R/W-0                               | U-0                         | U-0                              | U-0                       | U-0                | U-0         |
|--------------------|------------------------------------------|-------------------------------------|-----------------------------|----------------------------------|---------------------------|--------------------|-------------|
| TON <sup>(1)</sup> | —                                        | TSIDL                               | —                           | _                                | —                         | —                  | —           |
| bit 15             |                                          |                                     |                             |                                  |                           |                    | bit 8       |
|                    |                                          |                                     |                             |                                  |                           |                    |             |
| U-0                | R/W-0                                    | R/W-0                               | R/W-0                       | U-0                              | R/W-0                     | R/W-0              | U-0         |
|                    | TGATE                                    | TCKPS1                              | TCKPS0                      | _                                | TSYNC <sup>(1)</sup>      | TCS <sup>(1)</sup> | —           |
| bit 7              |                                          |                                     |                             |                                  |                           |                    | bit 0       |
|                    |                                          |                                     |                             |                                  |                           |                    |             |
| Legend:            |                                          |                                     |                             |                                  |                           |                    |             |
| R = Readab         | ole bit                                  | W = Writable                        | bit                         | U = Unimpler                     | mented bit, read          | as '0'             |             |
| -n = Value a       | at POR                                   | '1' = Bit is set                    |                             | '0' = Bit is cle                 | ared                      | x = Bit is unkn    | own         |
|                    |                                          | (1)                                 |                             |                                  |                           |                    |             |
| bit 15             | TON: Timer1                              | On bit <sup>(1)</sup>               |                             |                                  |                           |                    |             |
|                    | 1 = Starts 16-                           | bit Limer1<br>bit Timer1            |                             |                                  |                           |                    |             |
| bit 1/             | Unimplement                              | ted: Pead as '                      | ı'                          |                                  |                           |                    |             |
| bit 13             |                                          | 1 Stop in Idle N                    | /ode hit                    |                                  |                           |                    |             |
| DIC 15             | 1 = Discontinu                           | i stop in lae k                     | eration when a              | device enters l                  | dle mode                  |                    |             |
|                    | 0 = Continues                            | module opera                        | tion in Idle mo             | ode                              |                           |                    |             |
| bit 12-7           | Unimplement                              | ted: Read as '                      | )'                          |                                  |                           |                    |             |
| bit 6              | TGATE: Time                              | r1 Gated Time                       | Accumulation                | Enable bit                       |                           |                    |             |
|                    | When TCS =                               | <u>1:</u><br>prod                   |                             |                                  |                           |                    |             |
|                    | When TCS =                               | 0.<br>0.                            |                             |                                  |                           |                    |             |
|                    | 1 = Gated tim                            | <u>e</u> accumulatior               | n is enabled                |                                  |                           |                    |             |
|                    | 0 = Gated tim                            | e accumulatior                      | n is disabled               |                                  |                           |                    |             |
| bit 5-4            | TCKPS<1:0>                               | : Timer1 Input                      | Clock Prescal               | e Select bits                    |                           |                    |             |
|                    | 11 = 1:256                               |                                     |                             |                                  |                           |                    |             |
|                    | 10 = 1:64<br>01 = 1:8                    |                                     |                             |                                  |                           |                    |             |
|                    | 01 = 1.0<br>00 = 1.1                     |                                     |                             |                                  |                           |                    |             |
| bit 3              | Unimplement                              | ted: Read as '                      | )'                          |                                  |                           |                    |             |
| bit 2              | TSYNC: Time                              | er1 External Clo                    | ock Input Sync              | chronization Se                  | elect bit <sup>(1)</sup>  |                    |             |
|                    | When TCS =                               | 1:                                  |                             |                                  |                           |                    |             |
|                    | 1 = Synchroni                            | izes external cl                    | ock input                   |                                  |                           |                    |             |
|                    | 0 = Does not                             | synchronize ex                      | ternal clock in             | nput                             |                           |                    |             |
|                    | This bit is jand                         | <u>ored</u> .                       |                             |                                  |                           |                    |             |
| bit 1              | TCS: Timer1 (                            | Clock Source S                      | Select bit <sup>(1)</sup>   |                                  |                           |                    |             |
|                    | 1 = External c                           | lock is from pir                    | n, T1CK (on th              | ne rising edge)                  |                           |                    |             |
|                    | 0 = Internal cl                          | ock (FP)                            |                             | 5 5-7                            |                           |                    |             |
| bit 0              | Unimplement                              | ted: Read as '                      | )'                          |                                  |                           |                    |             |
| Note 1: \          | When Timer1 is en<br>attempts by user so | abled in Exterr<br>oftware to write | al Synchrono<br>to the TMR1 | us Counter mo<br>register are ig | ode (TCS = 1, T<br>nored. | SYNC = 1, TO       | N = 1), any |

## REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

#### REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
  - 1 = Pin is at logic '1'
  - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1' 0 = Pin is at logic '0'
- bit 0 **QEA:** Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
  - 0 = Pin is at logic '0'

# 21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

#### 21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en555464              |

#### 21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

# 23.4 ADC Control Registers

#### REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

| R/W-0         | U-0              | R/W-0             | R/W-0                       | U-0                 | R/W-0             | R/W-0                  | R/W-0               |
|---------------|------------------|-------------------|-----------------------------|---------------------|-------------------|------------------------|---------------------|
| ADON          | —                | ADSIDL            | ADDMABM                     | —                   | AD12B             | FORM1                  | FORM0               |
| bit 15        |                  |                   |                             |                     |                   | -                      | bit 8               |
|               |                  |                   |                             |                     |                   |                        |                     |
| R/W-0         | R/W-0            | R/W-0             | R/W-0                       | R/W-0               | R/W-0             | R/W-0, HC, HS          | R/C-0, HC, HS       |
| SSRC2         | SSRC1            | SSRC0             | SSRCG                       | SIMSAM              | ASAM              | SAMP                   | DONE <sup>(3)</sup> |
| bit 7         |                  |                   |                             |                     |                   | -                      | bit 0               |
|               |                  |                   |                             |                     |                   |                        |                     |
| Legend:       |                  | HC = Hardwa       | re Clearable bit            | HS = Hardwa         | re Settable bit   | C = Clearable bi       | t                   |
| R = Readab    | le bit           | W = Writable I    | bit                         | U = Unimpler        | nented bit, read  | d as '0'               |                     |
| -n = Value at | t POR            | '1' = Bit is set  |                             | '0' = Bit is clea   | ared              | x = Bit is unknow      | vn                  |
|               |                  |                   |                             |                     |                   |                        |                     |
| bit 15        | ADON: ADO        | C1 Operating N    | lode bit                    |                     |                   |                        |                     |
|               | 1 = ADC mo       | odule is operati  | ng                          |                     |                   |                        |                     |
|               | 0 = ADC is       | off               |                             |                     |                   |                        |                     |
| bit 14        | Unimpleme        | ented: Read as    | '0'                         |                     |                   |                        |                     |
| bit 13        | ADSIDL: AI       | DC1 Stop in Idle  | e Mode bit                  |                     |                   |                        |                     |
|               | 1 = Disconti     | inues module o    | peration when               | device enters       | Idle mode         |                        |                     |
|               | 0 = Continu      | es module ope     | ration in Idle mo           | ode                 |                   |                        |                     |
| bit 12        | ADDMABM          | : DMA Buffer E    | Build Mode bit              |                     |                   |                        |                     |
|               | 1 = DMA b        | uffers are writte | en in the order             | of conversion       | ; the module p    | provides an addre      | ess to the DMA      |
|               | 0 = DMA bi       | uffers are writte | en in Scatter/Ga            | ther mode: the      | e module prov     | ides a Scatter/Ga      | ther address to     |
|               | the DM           | A channel, bas    | ed on the index             | of the analog       | input and the     | size of the DMA        | ouffer.             |
| bit 11        | Unimpleme        | ented: Read as    | '0'                         |                     |                   |                        |                     |
| bit 10        | <b>AD12B:</b> AD | C1 10-Bit or 12   | 2-Bit Operation             | Mode bit            |                   |                        |                     |
|               | 1 = 12-bit, 1    | -channel ADC      | operation                   |                     |                   |                        |                     |
|               | 0 = 10-bit, 4    | -channel ADC      | operation                   |                     |                   |                        |                     |
| bit 9-8       | FORM<1:0         | >: Data Output    | Format bits                 |                     |                   |                        |                     |
|               | For 10-Bit C     | Operation:        |                             |                     |                   |                        |                     |
|               | 11 = Signed      | d fractional (Do  | UT = sddd ddd               | ld dd00 000         | 0, where $s = $ . | NOT.d<9>)              |                     |
|               | 10 = Fractions   | hai (DOUT = ac    | 100 0000 000<br>= cccc cccd |                     | where $c = N($    | (<0>b T(               |                     |
|               | 00 = Intege      | r (Dout = 0000    | 00dd dddd                   | dddd)               |                   | 51.u (0 <sup>2</sup> ) |                     |
|               | For 12-Bit C     | Deration:         |                             | ,                   |                   |                        |                     |
|               | 11 = Signed      | fractional (Do    | UT = sddd ddd               | ld dddd 000         | 0, where $s = .$  | NOT.d<11>)             |                     |
|               | 10 = Fractic     | onal (Dout = do   | ldd dddd ddd                | ld 0000)            |                   |                        |                     |
|               | 00 = Intege      | r (DOUT = 0.000)  | - ssss sada<br>) dddd dddd  | aaaa aaad,<br>dddd) | where $s = .NC$   | JI.U<112)              |                     |
|               |                  | . (2001 - 0000    |                             | adduj               |                   |                        |                     |
| Note 1: S     | See Section 24   | 1.0 "Peripheral   | l Trigger Gene              | rator (PTG) M       | odule" for info   | ormation on this s     | election.           |

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

### REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

| bit 7-5 | SSRC<2:0>: Sample Trigger Source Select bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | If SSRCG = 1:<br>111 = Reserved<br>110 = PTGO15 primary trigger compare ends sampling and starts conversion <sup>(1)</sup><br>101 = PTGO14 primary trigger compare ends sampling and starts conversion <sup>(1)</sup><br>100 = PTGO13 primary trigger compare ends sampling and starts conversion <sup>(1)</sup><br>011 = PTGO12 primary trigger compare ends sampling and starts conversion <sup>(1)</sup><br>010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion <sup>(2)</sup><br>001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion <sup>(2)</sup><br>000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion <sup>(2)</sup> |
|         | If SSRCG = 0:<br>111 = Internal counter ends sampling and starts conversion (auto-convert)<br>110 = CTMU ends sampling and starts conversion<br>101 = Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | <ul> <li>101 - Reserved</li> <li>100 = Timer5 compare ends sampling and starts conversion</li> <li>011 = PWM primary Special Event Trigger ends sampling and starts conversion</li> <li>010 = Timer3 compare ends sampling and starts conversion</li> <li>001 = Active transition on the INT0 pin ends sampling and starts conversion</li> <li>000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)</li> </ul>                                                                                                                                                                                                                                                                        |
| bit 4   | SSRCG: Sample Trigger Source Group bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | See SSRC<2:0> for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bit 3   | SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)<br>In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':<br>1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1<br>simultaneously (when CHPS<1:0> = 01)<br>0 = Samples multiple channels individually in sequence                                                                                                                                                                                                                                                                                                                                                          |
| bit 2   | ASAM: ADC1 Sample Auto-Start bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | <ul> <li>1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set</li> <li>0 = Sampling begins when the SAMP bit is set</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| bit 1   | SAMP: ADC1 Sample Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | <ul> <li>1 = ADC Sample-and-Hold amplifiers are sampling</li> <li>0 = ADC Sample-and-Hold amplifiers are holding</li> <li>If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC&lt;2:0&gt; = 000, software can write '0' to end sampling and start conversion. If SSRC&lt;2:0&gt; ≠ 000, automatically cleared by hardware to end sampling and start conversion.</li> </ul>                                                                                                                                                                                                                                                                                         |
| bit 0   | DONE: ADC1 Conversion Status bit <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | <ul> <li>1 = ADC conversion cycle has completed</li> <li>0 = ADC conversion has not started or is in progress</li> <li>Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.</li> </ul>                                                                                                                                                                                                                                                                                       |
| Note 1: | See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

| R/W-0                 | R/W-0                                                                                                                                               | R/W-0                                                                                                                                                                                                                                       | R/W-0                                                                                                                                       | R/W-0                                                                                                             | R/W-0            | R/W-0           | R/W-0   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------|
| PTGCLK2               | PTGCLK1                                                                                                                                             | PTGCLK0                                                                                                                                                                                                                                     | PTGDIV4                                                                                                                                     | PTGDIV3                                                                                                           | PTGDIV2          | PTGDIV1         | PTGDIV0 |
| bit 15                |                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 | bit 8   |
|                       |                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 |         |
| R/W-0                 | R/W-0                                                                                                                                               | R/W-0                                                                                                                                                                                                                                       | R/W-0                                                                                                                                       | U-0                                                                                                               | R/W-0            | R/W-0           | R/W-0   |
| PTGPWD3               | PTGPWD2                                                                                                                                             | PTGPWD1                                                                                                                                                                                                                                     | PTGPWD0                                                                                                                                     | —                                                                                                                 | PTGWDT2          | PTGWDT1         | PTGWDT0 |
| bit 7                 |                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 | bit 0   |
|                       |                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 |         |
| Legend:               |                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 |         |
| R = Readable          | bit                                                                                                                                                 | W = Writable                                                                                                                                                                                                                                | bit                                                                                                                                         | U = Unimplei                                                                                                      | mented bit, reac | l as '0'        |         |
| -n = Value at P       | POR                                                                                                                                                 | '1' = Bit is set                                                                                                                                                                                                                            |                                                                                                                                             | '0' = Bit is cle                                                                                                  | eared            | x = Bit is unkr | nown    |
| bit 15-13<br>bit 12-8 | PTGCLK<2:0<br>111 = Reserv<br>110 = Reserv<br>101 = PTG m<br>010 = PTG m<br>011 = PTG m<br>010 = PTG m<br>001 = PTG m<br>000 = PTG m<br>PTGDIV<4:02 | <ul> <li>Select PTG</li> <li>red</li> <li>odule clock so</li> </ul> | Source bits<br>CLK<br>CLK<br>CLK<br>D<br>SSC<br>S<br>ler (divider) bi                                                                       | ts                                                                                                                |                  |                 |         |
|                       | 11111 = Divic<br>11110 = Divic<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                       | de-by-32<br>de-by-31<br>de-by-2<br>de-by-1                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                   |                  |                 |         |
| bit 7-4               | PTGPWD<3:0                                                                                                                                          | <b>0&gt;:</b> PTG Trigge                                                                                                                                                                                                                    | er Output Pulse                                                                                                                             | e-Width bits                                                                                                      |                  |                 |         |
|                       | <pre>1111 = All trigger outputs are 16 PTG clock cycles wide 1110 = All trigger outputs are 15 PTG clock cycles wide</pre>                          |                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                   |                  |                 |         |
| bit 3                 | Unimplemen                                                                                                                                          | ted: Read as '                                                                                                                                                                                                                              | 0'                                                                                                                                          |                                                                                                                   |                  |                 |         |
| bit 2-0               | PTGWDT<2:0                                                                                                                                          | 0>: Select PTG                                                                                                                                                                                                                              | Watchdog Tir                                                                                                                                | mer Time-out                                                                                                      | Count Value bits | 3               |         |
|                       | 111 = Watcho<br>110 = Watcho<br>101 = Watcho<br>100 = Watcho<br>011 = Watcho<br>010 = Watcho<br>001 = Watcho<br>000 = Watcho                        | dog Timer will t<br>dog Timer is dis                                                                                | ime-out after 5<br>ime-out after 2<br>ime-out after 1<br>ime-out after 3<br>ime-out after 3<br>ime-out after 1<br>ime-out after 8<br>sabled | 512 PTG clock<br>256 PTG clock<br>28 PTG clock<br>54 PTG clock<br>54 PTG clocks<br>52 PTG clocks<br>53 PTG clocks | S<br>S<br>S      |                 |         |

## REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| U-0        | R/W-0                          | U-0                                                         | U-0                  | U-0                       | R/W-0                        | U-0              | U-0   |
|------------|--------------------------------|-------------------------------------------------------------|----------------------|---------------------------|------------------------------|------------------|-------|
| _          | CVR2OE <sup>(1)</sup>          | —                                                           | _                    | —                         | VREFSEL                      | —                | —     |
| bit 15     |                                |                                                             |                      |                           |                              |                  | bit 8 |
|            |                                |                                                             |                      |                           |                              |                  |       |
| R/W-0      | D R/W-0                        | R/W-0                                                       | R/W-0                | R/W-0                     | R/W-0                        | R/W-0            | R/W-0 |
| CVRE       | N CVR10E <sup>(1)</sup>        | CVRR                                                        | CVRSS <sup>(2)</sup> | CVR3                      | CVR2                         | CVR1             | CVR0  |
| bit 7      |                                |                                                             |                      |                           |                              |                  | bit 0 |
|            |                                |                                                             |                      |                           |                              |                  |       |
| Legend:    |                                |                                                             |                      |                           |                              |                  |       |
| R = Read   | able bit                       | W = Writable bit U = Unimplemented H                        |                      |                           |                              | as '0'           |       |
| -n = Value | e at POR                       | '1' = Bit is set                                            | t                    | '0' = Bit is cle          | eared                        | x = Bit is unkr  | Iown  |
|            |                                |                                                             |                      |                           |                              |                  |       |
| bit 15     | Unimplemen                     | ted: Read as '                                              | 0'                   |                           | (1)                          |                  |       |
| bit 14     | CVR2OE: Co                     | mparator Volta                                              | ige Reference        | 2 Output Ena              | ble bit(")                   |                  |       |
|            | 1 = (AVDD - A<br>0 = (AVDD - A | AVSS)/2 is conr<br>AVSS)/2 is disce                         | nected to the C      | VREF20 pin<br>the CVREF20 | pin                          |                  |       |
| bit 13-11  | Unimplemen                     | ted: Read as '                                              | 0'                   |                           |                              |                  |       |
| bit 10     | VREFSEL: C                     | omparator Voli                                              | age Reference        | e Select bit              |                              |                  |       |
|            | 1 = CVREFIN :                  | = VREF+                                                     | -                    |                           |                              |                  |       |
|            | 0 = CVREFIN i                  | is generated by                                             | y the resistor n     | etwork                    |                              |                  |       |
| bit 9-8    | Unimplemen                     | ted: Read as '                                              | 0'                   |                           |                              |                  |       |
| bit 7      | CVREN: Con                     | nparator Voltag                                             | e Reference E        | nable bit                 |                              |                  |       |
|            | 1 = Compara                    | tor voltage refe                                            | erence circuit is    | s powered on              | MD                           |                  |       |
| bit 6      | CVR1OF: Co                     | CVP10F: Comparator Voltage Reference 1 Output Enable hit(1) |                      |                           |                              |                  |       |
| bito       | 1 = Voltage le                 | evel is output o                                            | n the CVRFF10        |                           |                              |                  |       |
|            | 0 = Voltage le                 | evel is disconne                                            | ected from the       | n CVREF10 pi              | n                            |                  |       |
| bit 5      | CVRR: Comp                     | parator Voltage                                             | Reference Ra         | inge Selectior            | n bit                        |                  |       |
|            | 1 = CVRSRC/2                   | 24 step-size                                                |                      |                           |                              |                  |       |
|            | 0 = CVRSRC/3                   | 32 step-size                                                |                      |                           |                              |                  |       |
| bit 4      | CVRSS: Com                     | nparator Voltag                                             | e Reference S        | ource Selecti             | on bit <sup>(2)</sup>        |                  |       |
|            | 1 = Compara<br>0 = Compara     | tor voltage refe<br>tor voltage refe                        | erence source,       | CVRSRC = (V CVRSRC = A)   | REF+) – (AVSS)<br>/dd – AVSS |                  |       |
| bit 3-0    | <b>CVR&lt;3:0&gt;</b> Co       | omparator Volt                                              | age Reference        | Value Select              | ion $0 \leq CVR < 3$ :       | $0> \le 15$ bits |       |
|            | When CVRR                      | = 1:                                                        |                      |                           |                              |                  |       |
|            | CVREFIN = (C                   | VR<3:0>/24) •                                               | (CVRSRC)             |                           |                              |                  |       |
|            | When CVRR                      | = 0:                                                        |                      |                           |                              |                  |       |
|            | CVREFIN = (C                   | VRSRC/4) + (C                                               | VR<3:0>/32) •        | (CVRSRC)                  |                              |                  |       |
| Note 1:    | CVRxOE overrides               | s the TRISx an                                              | d the ANSELx         | bit settings.             |                              |                  |       |

#### REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

| DC CHARACTERISTICS |                   |                                                                  | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$ |   |     |      |                 |  |
|--------------------|-------------------|------------------------------------------------------------------|----------------------------------------------------------|---|-----|------|-----------------|--|
| Param<br>No.       | Symbol            | Characteristic                                                   | Min. Typ. Max. Units Conditions                          |   |     |      | Conditions      |  |
| Operati            | Operating Voltage |                                                                  |                                                          |   |     |      |                 |  |
| DC10               | Vdd               | Supply Voltage                                                   | 3.0                                                      | _ | 3.6 | V    |                 |  |
| DC16               | VPOR              | VDD Start Voltage<br>to Ensure Internal<br>Power-on Reset Signal | _                                                        | _ | Vss | V    |                 |  |
| DC17               | Svdd              | VDD Rise Rate<br>to Ensure Internal<br>Power-on Reset Signal     | 0.03                                                     | — | —   | V/ms | 0V-1V in 100 ms |  |

#### TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

### TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

| Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |        |                                                   |      |      |      |       |                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------|------|------|------|-------|-------------------------------------------------------|
| Param<br>No.                                                                                                                                                                             | Symbol | Characteristics                                   | Min. | Тур. | Max. | Units | Comments                                              |
|                                                                                                                                                                                          | Cefc   | External Filter Capacitor<br>Value <sup>(1)</sup> | 4.7  | 10   | _    | μF    | Capacitor must have a low series resistance (< 1 Ohm) |

**Note 1:** Typical VCAP voltage = 1.8 volts when VDD  $\geq$  VDDMIN.



#### FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X



#### FIGURE 30-34: ECAN<sub>x</sub> MODULE I/O TIMING CHARACTERISTICS

#### TABLE 30-51: ECANx MODULE I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                              | $ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $ |                     |      |       |                    |
|--------------------|--------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|--------------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>                | Min.                                                                                                                                                                                                                                                                                         | Тур. <sup>(2)</sup> | Max. | Units | Conditions         |
| CA10               | TIOF   | Port Output Fall Time                        |                                                                                                                                                                                                                                                                                              | _                   | _    | ns    | See Parameter DO32 |
| CA11               | TIOR   | Port Output Rise Time                        | _                                                                                                                                                                                                                                                                                            | _                   | _    | ns    | See Parameter DO31 |
| CA20               | TCWF   | Pulse Width to Trigger<br>CAN Wake-up Filter | 120                                                                                                                                                                                                                                                                                          |                     |      | ns    |                    |

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### **FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS**



#### TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |         |                                                   | Standard Operating Conditions: 3.0V to 3.6V<br>(unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |                     |      |       |            |
|--------------------|---------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|------------|
| Param<br>No.       | Symbol  | Characteristic <sup>(1)</sup>                     | Min.                                                                                                                                      | Тур. <sup>(2)</sup> | Max. | Units | Conditions |
| UA10               | TUABAUD | UARTx Baud Time                                   | 66.67                                                                                                                                     | _                   | _    | ns    |            |
| UA11               | FBAUD   | UARTx Baud Frequency                              | —                                                                                                                                         | —                   | 15   | Mbps  |            |
| UA20               | TCWF    | Start Bit Pulse Width to Trigger<br>UARTx Wake-up | 500                                                                                                                                       | _                   | _    | ns    |            |

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

## 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS |          |      |      |  |
|----------------------------|-------------|----------|------|------|--|
| Dimension                  | MIN         | NOM      | MAX  |      |  |
| Contact Pitch E            |             | 0.65 BSC |      |      |  |
| Optional Center Pad Width  | W2          |          |      | 6.60 |  |
| Optional Center Pad Length | T2          |          |      | 6.60 |  |
| Contact Pad Spacing        | C1          |          | 8.00 |      |  |
| Contact Pad Spacing        | C2          |          | 8.00 |      |  |
| Contact Pad Width (X44)    | X1          |          |      | 0.35 |  |
| Contact Pad Length (X44)   | Y1          |          |      | 0.85 |  |
| Distance Between Pads      |             | 0.25     |      |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

# APPENDIX A: REVISION HISTORY

# **Revision A (April 2011)**

This is the initial released version of the document.

## Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

### TABLE A-1: MAJOR SECTION UPDATES

| Section Name                                                                     | Update Description                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "High-Performance, 16-bit<br>Digital Signal Controllers<br>and Microcontrollers" | Changed all pin diagrams references of VLAP to TLA.                                                                                                                                                                                                                                                                     |
| Section 4.0 "Memory<br>Organization"                                             | Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).                                                                                                                                                                                                                |
| Section 5.0 "Flash Program<br>Memory"                                            | Updated "one word" to "two words" in the first paragraph of <b>Section 5.2 "RTSP Operation"</b> .                                                                                                                                                                                                                       |
| Section 9.0 "Oscillator<br>Configuration"                                        | Updated the PLL Block Diagram (see Figure 9-2).<br>Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL<br>(FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).                                                                                                                                 |
|                                                                                  | Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and<br>NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).                                                                                                                                                                                   |
|                                                                                  | Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2). |
|                                                                                  | Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).                                                                                                                                       |
| Section 22.0 "Charge Time<br>Measurement Unit (CTMU)"                            | Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).                                                                                                                                                                                                            |
| Section 25.0 "Op amp/<br>Comparator Module"                                      | Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).                                                                                                                                                                                                                                         |