

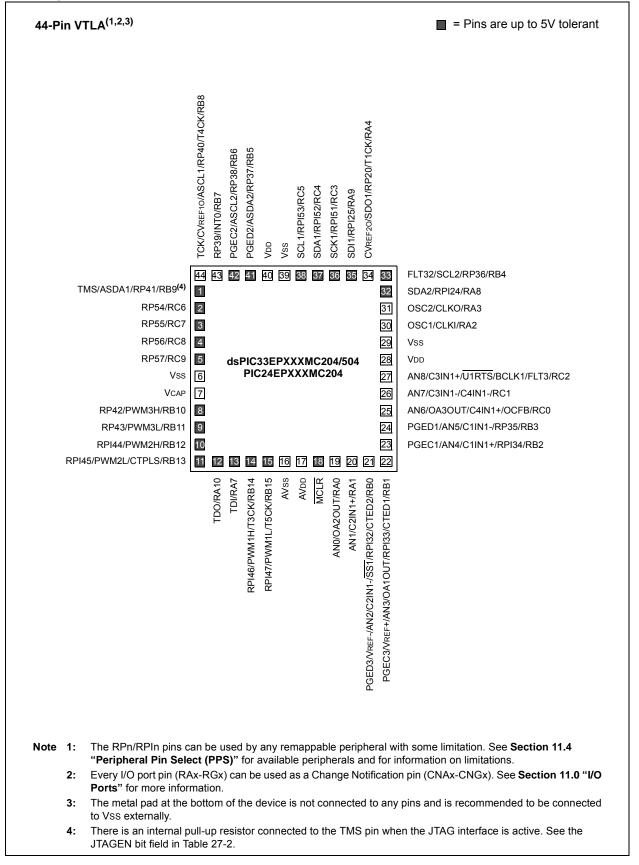
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gp504t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

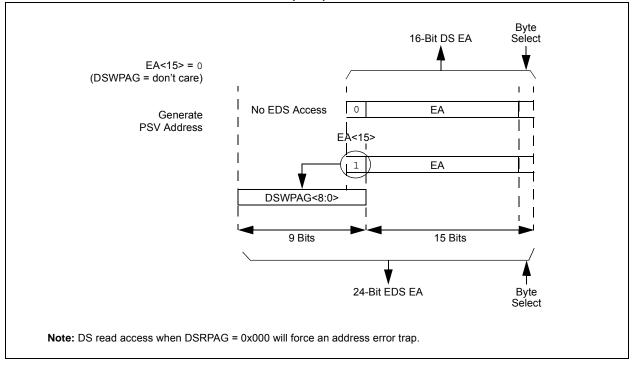
TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD				I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762		_	_	-	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD			CRCMD	_	—	—		—	I2C2MD		0000
PMD4	0766	_	_	_	_	_	_			_	_	—	—	REFOMD	CTMUMD			0000
PMD6	076A	_		_	_	_				_		—	_		—			0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIND7	0700	_	_	_	_	_	_	_	_	_	—	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	—		_	_	PWM3MD	PWM2MD	PWM1MD	—			_	—		—	-	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
bit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) 011 = Capture mode, every rising edge (Simple Capture mode)
	010 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

NOTES:

REGISTE	R 16-7: PWMC	CONX: PWMX (CONTROL R	EGISTER			
HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	·	•		÷			bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC1		DTCP ⁽³⁾	0-0	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7	DICO	DICE	_	INT DO	CAIM	AFRES'	bit
							<u> </u>
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Reada	able bit	W = Writable bi	t	U = Unimple	mented bit, rea	ıd as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	ELTSTAT: ES	ult Interrupt Statu	is hit(1)				
DIL 15		rrupt is pending					
		interrupt is pendi	ng				
		ared by setting F					
bit 14		rent-Limit Interru	•				
		mit interrupt is pe					
		nt-limit interrupt is ared by setting C					
bit 13		igger Interrupt S					
		terrupt is pendin					
		r interrupt is pen					
		ared by setting T					
bit 12		t Interrupt Enable	e bit				
		rrupt is enabled rrupt is disabled	and the FLTS	TAT bit is clear	ed		
bit 11		ent-Limit Interrup			cu .		
		mit interrupt is er					
		mit interrupt is di		e CLSTAT bit is	s cleared		
bit 10	TRGIEN: Trig	ger Interrupt En	able bit				
		event generates			T hit is cleared		
bit 9		vent interrupts ar dent Time Base I			i bit is cleared		
DIL 9		register provides		riad for this PM	VM generator		
		egister provides f	•		•		
bit 8		er Duty Cycle Re					
		ister provides du jister provides du				r	
Note 1:	Software must clea				-		t controller
Note 1. 2:	These bits should	-		-	-	the interrup	
3:	DTC<1:0> = 11 fo	-		-	-		
4:	The Independent T CAM bit is ignored	Time Base (ITB =		•		igned mode. If	TTB = 0, the
5:	To operate in Exter		t mode, the IT	B bit must be '	1' and the CLM	10D bit in the I	FCLCONx

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

17.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1' 0 = Pin is at logic '0'
- bit 0 **QEA:** Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15		•		•	•	•	bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7	CKF	WISTEN	SFREZ 7	SFREI?	SFREU 7	FFREN	bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as	0'								
bit 12			bit (SPIx Mas	-	()						
		PIx clock is di	sabled, pin fun	ctions as I/O							
oit 11		able SDOx Pir									
			/ the module; p	oin functions as	s I/O						
		is controlled b									
bit 10	MODE16: Wo	ord/Byte Comn	nunication Sele	ect bit							
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 										
		•	. ,								
bit 9		ata Input Sam	ole Phase bit								
	Master mode	-	end of data o	utout time							
			middle of data								
	Slave mode:										
			SPIx is used i	n Slave mode.							
bit 8		lock Edge Sele									
						lle clock state (r					
bit 7			bit (Slave mo			ve clock state (i					
		sused for Slav									
				is controlled b	by port function						
bit 6	CKP: Clock F	Polarity Select	bit								
			nigh level; activ ow level; active								
bit 5	MSTEN: Mas	ter Mode Enat	ole bit								
	1 = Master m 0 = Slave mo										
Note 1: T	he CKE bit is not	used in Frame	d SPI modes. I	Program this bi	it to '0' for Fram	ed SPI modes (FRMEN = 1				
	his bit must be cl										
0											

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BF	><3:0>		F2BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BF	><3:0>			F0BF	P<3:0>			
bit 7							bit C		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-12	F3BP<3:0>	: RX Buffer Mas	k for Filter 3 b	oits					
	1110 = Filte •	r hits received in r hits received in r hits received in	n RX Buffer 14						
	0001	er hits received in thits received in							
bit 11-8	F2BP<3:0>	RX Buffer Mas	k for Filter 2 b	oits (same value	s as bits<15:1	2>)			
bit 7-4 F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same val					s as bits<15:12	2>)			
	bit 3-0 F0BP<3:0>: RX Buffer Mask for Filter 0								

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0	
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	
bit 15							bit 8	

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

DIL 10-12	Uninpienienieu. Reau as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	1111 = FLT4 1110 = FLT2
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H

Base Instr # Assembly Mnemonic			Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
		CONTINUED	,

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

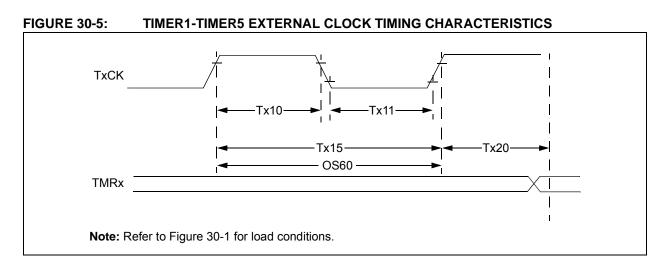
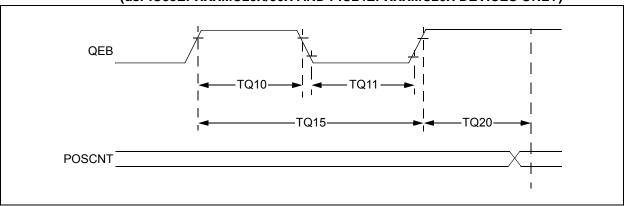

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected None	
46 MOV		MOV	f,Wn	Move f to Wn	1	1		
		MOV	f	Move f to f	1	1	None	
		MOV	f,WREG	Move f to WREG	1	1	None	
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None	
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None	
		MOV	Wn,f	Move Wn to f	1	1	None	
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None	
		MOV	WREG, f	Move WREG to f	1	1	None	
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None	
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None	
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None	
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None	
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None	
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None	
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None	
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None	
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None	
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None	
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


TABLE 30-23: TIME	R1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾)
-------------------	--	---

АС СН	ARACTERIS	TICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions	
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	35	_	—	ns		
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	10		—	ns		
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	—	ns	N = prescale value (1, 8, 64, 256)	
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz		
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns		

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

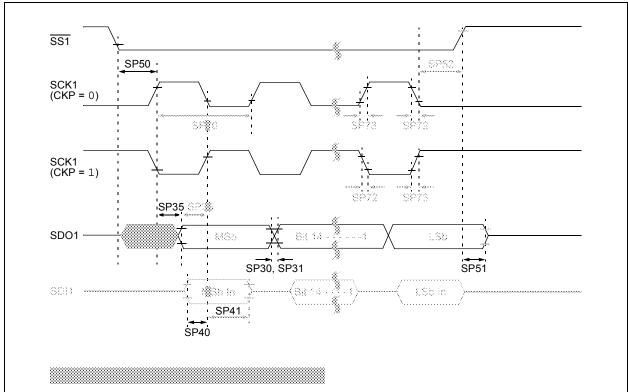
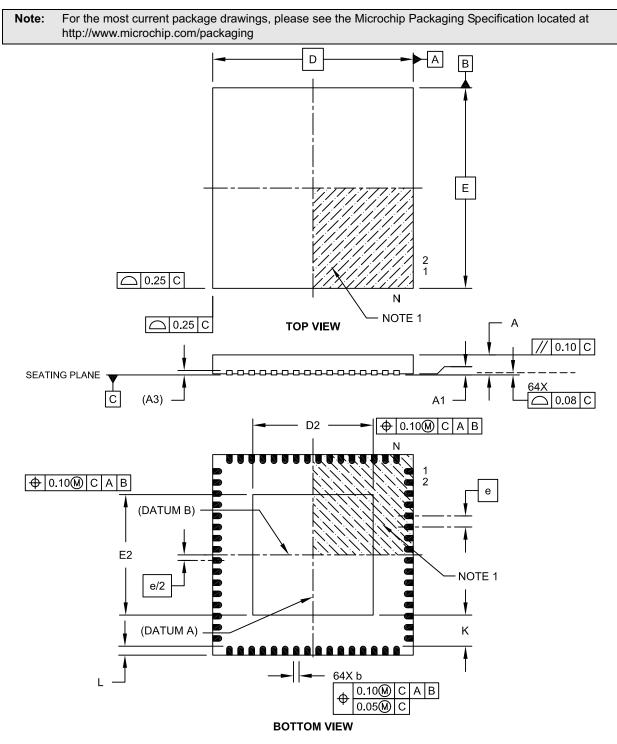

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)


AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15	
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns		
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

INDEX

Α

	1
AC Characteristics	1
10-Bit ADC Conversion Requirements 46	5
12-Bit ADC Conversion Requirements 46	3
ADC Module45	9
ADC Module (10-Bit Mode)461, 47	3
ADC Module (12-Bit Mode)	3
Capacitive Loading Requirements on	
Output Pins	3
DMA Module Requirements	
ECANx I/O Requirements45	
External Clock41	
High-Speed PWMx Requirements42	
I/O Timing Requirements41	
I2Cx Bus Data Requirements (Master Mode) 45	1
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture x Requirements	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Internal RC Accuracy	
Load Conditions	
OCx/PWMx Mode Requirements	
Op Amp/Comparator Voltage Reference	•
Settling Time Specifications	7
Output Compare x Requirements	
PLL Clock	
QEI External Clock Requirements	
QEI Index Pulse Requirements	
Quadrature Decoder Requirements	
Reset, Watchdog Timer, Oscillator Start-up Timer,	4
Power-up Timer Requirements	7
Fower-up filler Requirements	
SPI1 Master Mode (Full Dupley CKE = 0 CKP = v	'
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Pequirements	
SMP = 1) Requirements	
SMP = 1) Requirements44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x,	1
SMP = 1) Requirements44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44	1
SMP = 1) Requirements44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44 SPI1 Master Mode (Half-Duplex, Transmit Only)	-1 -0
SMP = 1) Requirements	-1 -0 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, 44 SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43	-1 -0 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, 44 SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, 43	-1 -0 -9 -8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44	-1 -0 -9 -8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44	-1 -0 -9 -8 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44	-1 -0 -9 -8 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, 44	1 0 9 8 9 .9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44	1 0 9 8 9 .9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44	1 9 8 9 7 3
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44	1 0 9 8 9 7 3 5
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI 44	-1 -0 -9 -8 -9 -7 -3 -5 P
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42	-1 -0 -9 -8 -9 -7 -3 -5 P
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, 42	1 9 8 9 7 3 5 9 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42	1 9 8 9 7 3 5 9 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) 42	1 0 9 8 9 7 3 5 P 9 8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 42	1 0 9 8 9 7 3 5 P 9 8 7 3 5 P 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) 42 SPI2 Maximum Data/Clock Rate Summary 42	1 0 9 8 9 7 3 5 P 9 8 7 3 5 P 9
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0,42	1 0 9 8 9 7 3 5 P 9 8 7 6
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43	1 0 9 8 9 7 3 5 P 9 8 7 6 7
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI	1 0 9 8 9 7 3 5 P 9 8 7 6 7 P
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43	1 0 9 8 9 7 3 5 P 9 8 7 6 7 P
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMI = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMI = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5 1

Timer1 External Clock Requirements	418
Timer2/Timer4 External Clock Requirements	419
Timer3/Timer5 External Clock Requirements	419
UARTx I/O Requirements	454
ADC	
Control Registers	325
Helpful Tips	324
Key Features	321
Resources	324
Arithmetic Logic Unit (ALU)	44
Assembler	
MPASM Assembler	398
В	
_	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	116
Block Diagrams	
Data Access from Program Space	
Address Generation	
16-Bit Timer1 Module	
ADC Conversion Clock Period	323
ADC with Connection Options for ANx Pins	
and Op Amps	
Arbiter Architecture	
BEMF Voltage Measurement Using ADC	
Boost Converter Implementation	
CALL Stack Frame	
Comparator (Module 4)	
Connections for On-Chip Voltage Regulator	
CPU Core	
CRC Module	
CRC Shift Engine	
CTMU Module	
Digital Filter Interconnect	
DMA Controller Module	
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/5	
and PIC24EPXXXGP/MC20X	
ECAN Module	
EDS Read Address Generation	
EDS Write Address Generation	
Example of MCLR Pin Connections	
High-Speed PWMx Architectural Overview	
High-Speed PWMx Register Interconnection	228
I2Cx Module	
Input Capture x	
Interleaved PFC	
Multiphase Synchronous Buck Converter	
Multiplexing Remappable Output for RPn	
Op Amp Configuration A	
Op Amp Configuration B	
Op Amp/Comparator Voltage Reference Module	
Op Amp/Comparator x (Modules 1, 2, 3)	
Oscillator System	
Output Compare x Module	
PLL	
Programmer's Model	
PTG Module	
Quadrature Encoder Interface	
Recommended Minimum Connection	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.