

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Program Memory" (DS70613) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-5.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP32GP50X, dsPIC33EP32MC20X/50X AND PIC24EP32GP/MC20X DEVICES

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	—	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—	—		—	_	_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	—	—	—		—	—	_	_		—	—	_	—	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF		_	_	_	_		_	_	—	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
IFS9	0812	—	—	—	_	—	—	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	_	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	—	—	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	_	—	—	—	—		—	_	—	—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	—	—	CTMUIE	_	—	—	—	—	_	—	—	—	CRCIE	U2EIE	U1EIE	—	0000
IEC8	0830	JTAGIE	ICDIE	—	_	—	—	—	—		—	_	—	—	—	—	—	0000
IEC9	0832	—	—	—	_	—	—	—	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	—		T1IP<2:0>		—		OC1IP<2:0)>	— IC1IP<2:0> — INT0IP<		INT0IP<2:0> 44		4444				
IPC1	0842	—		T2IP<2:0>		—		OC2IP<2:0)>		- IC2IP<2:0> - DMA0IP<2:0		0MA0IP<2:0>		4444			
IPC2	0844	—	ι	J1RXIP<2:0	>	—	:	SPI1IP<2:0)>	_	SPI1EIP<2:0>		T3IP<2:0>		4444			
IPC3	0846	—	—	—	—	—	0)MA1IP<2:	0>			AD1IP<2:0>	•	—	U1TXIP<2:0>			0444
IPC4	0848	—		CNIP<2:0>		—		CMIP<2:0	>	_		MI2C1IP<2:0	>	- SI2C1IP<2:0>			4444	
IPC5	084A	—	—	—	_	—	—	—	—	_	—	—	—	—		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		—		OC4IP<2:0)>	_		OC3IP<2:0>	•	— DMA2IP<2:0>			4444	
IPC7	084E	—	l	J2TXIP<2:0	>	—	ι	J2RXIP<2:	0>	_		INT2IP<2:0>	>	—		T5IP<2:0>		4444
IPC8	0850	—	—	—	_	—	—	—	—	_		SPI2IP<2:0>	>	—	S	SPI2EIP<2:0>		0044
IPC9	0852	—	—	—	_	—		IC4IP<2:0	>	_		IC3IP<2:0>		—	0	0MA3IP<2:0>		0444
IPC12	0858	—	—	—	_	—	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	—	—	—	—	0440
IPC16	0860	—		CRCIP<2:0	>	—		U2EIP<2:0	>	_		U1EIP<2:0>		—	—	—	—	4440
IPC19	0866	—	—	—	_	—	—	—	—	_		CTMUIP<2:0	>	—	—	—	—	0040
IPC35	0886	—		JTAGIP<2:0	>	—		ICDIP<2:0	>	_	—	—	—	—	—	—	—	4400
IPC36	0888	—	F	PTG0IP<2:0	>	—	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	2:0>	—	—	—	—	4440
IPC37	088A	—	—	—		—	F	PTG3IP<2:	0>			PTG2IP<2:0	>	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	—	—	—	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	—	_	—	—	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	—	_	—	—	_	—	DAE	DOOVR	—	_	—	—	0000
INTCON4	08C6	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	SGHT	0000
INTTREG	08C8	_	_	_	—		ILR<	3:0>		VECNUM<7:0>						0000		

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

Normal Address							Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture uses a 24-bit-wide Program Space (PS) and a 16-bit-wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-65: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0	0 PC<22:1>						
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TBLPAG<7:0> Data EA<15:0>							
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxx					
	Configuration	TBLPAG<7:0>							
		1	XXX XXXX	XXXX XX	xx xxxx xxxx				

FIGURE 4-22: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
[
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	\perp = Interrupt	nesting is disa	ibled				
bit 14	OVAFRR: A	ccumulator A (Overflow Trap F	lag bit(1)			
2	1 = Trap was	s caused by ov	erflow of Accur	nulator A			
	0 = Trap was	s not caused b	y overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	lag bit ⁽¹⁾			
	1 = Trap was	s caused by ow	erflow of Accur	nulator B			
	0 = Irap was	s not caused b	y overflow of A	ccumulator B	(1)		
bit 12	COVAERR:	Accumulator A	Catastrophic (Jverflow Trap FI	ag bit("		
	1 = Trap was 0 = Trap was	s not caused by ca	v catastrophic over	overflow of Accu	mulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap Fl	ag bit ⁽¹⁾		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B		
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	mulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap ove	rflow of Accun	nulator A				
hit 0			orflow Tran En	able bit(1)			
DIL 9	1 = Tran ove	rflow of Accun	nulator B				
	0 = Trap is d	isabled					
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enat	ole bit ⁽¹⁾			
	1 = Trap on o	catastrophic ov	erflow of Accu	mulator A or B is	s enabled		
	0 = Trap is d	isabled					
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit ⁽¹⁾			
	1 = Math erro	or trap was ca or trap was po	used by an inva t caused by an	alid accumulator	shift ator shift		
hit 6		ivide-hv-Zero	Error Status bit				
bit o	1 = Math erro	or trap was ca	used by a divide	e-bv-zero			
	0 = Math erro	or trap was no	t caused by a d	ivide-by-zero			
bit 5	DMACERR:	DMAC Trap F	lag bit				
	1 = DMAC tr	ap has occurre	ed				
	0 = DMAC tr	ap has not occ	curred				
Note 1: The	ese bits are ava	ailable on dsPl	C33EPXXXMC	20X/50X and de	PIC33EPXXX	GP50X devices	s only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				·	-		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SS2R<6:0>			
bit 7	<u>.</u>						bit 0
Logondi							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

NOTES:

·									
R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL		
bit 15	bit								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC		
bit 7 b									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	PENH: PWM	(H Output Pin (Ownership bit						
	1 = PWMx mc	dule controls I	PWMxH pin WMx⊟ pin						
hit 11									
DIL 14	1 = DM/Mx mc	adula controla l							
	1 = PWWX IIIC 0 = GPIO model	dule controls P	WMxL pin						
hit 13		H Output Pin I	Polarity bit						
	1 = PWMxH r	in is active-low	/						
	0 = PWMxH p	oin is active-hig	h						
bit 12	POLL: PWMx	L Output Pin F	olarity bit						
	1 = PWMxL p	in is active-low	,						
	0 = PWMxL p	0 = PWMxL pin is active-high							
bit 11-10	PMOD<1:0>: PWMx # I/O Pin Mode bits ⁽¹⁾								
	11 = Reserve	d; do not use							
	10 = PWMx I/	O pin pair is in	the Push-Pul	I Output mode					
	01 = PWWx I/ 00 = PWMx I/	O pin pair is in O pin pair is in	the Complem	nt Output mod entary Output	mode				
hit 9	OVRENH: Ov	erride Enable i	for PWMxH P	in bit	mouo				
bit o	1 = OVRDAT	<1> controls or	itput on PWM	xH nin					
	0 = PWMx ge	nerator control	s PWMxH pin						
bit 8	OVRENL: Ov	erride Enable f	or PWMxL Pi	n bit					
	1 = OVRDAT	<0> controls ou	Itput on PWM	xL pin					
	0 = PWMx ge	nerator control	s PWMxL pin						
bit 7-6	OVRDAT<1:0	>: Data for PW	/MxH, PWMxl	L Pins if Overr	ide is Enabled b	its			
	If OVERENH	= 1, PWMxH is	s driven to the	state specifie	d by OVRDAT<	1>.			
	If OVERENL :	= 1, PWMxL is	driven to the	state specified	l by OVRDAT<0	>.			
bit 5-4	FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits								
	If Fault is activ	ve, PWMxH is	driven to the s	state specified	by FLTDAT<1>				
hit 2 0		VE, FVVIVIXL IS (UY FLIDAISUS.	hita			
DIL 3-2	LUAI <1:0>	is active DIM		IXL PILIS IT ULN					
	If current-limit	is active. PWN	/IxL is driven t	to the state sp	ecified by CLDA	T<0>.			
Note 1: The	ese bits should i	not be changed	d after the PW	Mx module is	enabled (PTEN	= 1).			

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is c		'0' = Bit is cle	ared	x = Bit is unkı	nown		

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
1							

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

QEIIC<15:8> bit 15 bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> bit 7 bit 7 bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 b R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> b b Legend: W = Writable bit U = Unimplemented bit read as '0'				QEII	C<15:8>			
R/W-0 R/W-0 <th< td=""><td>bit 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 8</td></th<>	bit 15							bit 8
R/W-0 R/W-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
QEIIC<7:0> bit 7 Legend: R = Readable bit W = Writable bit	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 b Legend: W = Writable bit B = Readable bit W = Writable bit				QEII	C<7:0>			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit read as '0'	bit 7						bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit read as '0'								
R = Readable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$	Legend:							
	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0				
bit 15			•	•			bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	Unimplemen	nted: Read as '	0'								
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit							
	1 = Uses CAI	N bus line filter	for wake-up	a-un							
bit 13-11		ted. Pead as '		e-up							
bit 10-8	SEG2PH-2.0		u nent 2 hits								
511 10-0	111 = 1 enoth	is 8 x To									
	•										
	•										
	•										
	000 = Length	n is 1 x Tq									
bit 7	SEG2PHTS:	SEG2PHTS: Phase Segment 2 Time Select bit									
	1 = Freely pro	ogrammable					-4				
hit C		1 OF SEGIPHX	Dits or informa	ation Processin	g Time (IPT), w	nicnever is gre	eater				
DIL 6	SAM: Sample of the CAN Bus Line bit										
	0 = Bus line i	s sampled once	e at the sampl	e point							
bit 5-3	SEG1PH<2:0)>: Phase Segr	nent 1 bits	•							
	111 = Length is 8 x Tq										
	•										
	•										
	•										
	000 = Length	n is 1 x Tq									
bit 2-0	PRSEG<2:0>	>: Propagation	Time Segmen	t bits							
	111 = Length	n is 8 x TQ									
	•										
	•										
	-										

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP	<3:0>		F6BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP	<3:0>		F4BP<3:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-12	F7BP<3:0>: 1111 = Filter	RX Buffer Masl	k for Filter 7 b	its ffer				

1110 = Filter hits received in RX Buffer 14
•
•
0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BF	P<3:0>		F10BP<3:0>				
bit 15							bit 8	
R/W_0	R/M-0	R/M/-0	R/M-0	R/\\/_0	R/W/-0	R/M/-0	R/\/_0	
10,00-0	F9BP<3:0> F8BP<3:0>						1477-0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter • • • 0001 = Filter 0000 = Filter	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	sk for Filter 1 n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	1 bits iffer 4				
bit 11-8 bit 7-4	F10BP<3:0> F9BP<3:0>:	RX Buffer Ma	sk for Filter 1 k for Filter 9 k	0 bits (same val bits (same value	lues as bits<15 s as bits<15:1	5:12>) 2>)		
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)		

© 2011-2013 Microchip Technology Inc.

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x								
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3								
bit 15							bit 8								
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x								
SID2	SID1	SID0	—	EXIDE	_	EID17	EID16								
bit 7	bit 0														
Legend:															
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'															
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unl			nown								
bit 15-5	SID<10:0>: Standard Identifier bits														
	1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter														
bit 4	Unimplement	ted: Read as '	כי												
bit 3	EXIDE: Exten	ded Identifier E	Enable bit												
	If MIDE = 1:														
	1 = Matches only messages with Extended Identifier addresses														
		only messages	with Standard		resses										
	Ignores EXIDI	E bit.													
bit 2	Unimplement	ted: Read as '	כ'												
bit 1-0	EID<17:16>:	Extended Iden	tifier bits												
	1 = Message	address bit, El	Dx, must be 'a	L' to match filte	er										
	0 = Message	address bit, El	Dx, must be '	o' to match filte	er		0 = Message address bit, EIDx, must be '0' to match filter								

NOTES:

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

	30-37.						
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
			Devi	ce Sup	ply		
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	—	Lesser of: VDD + 0.3 or 3.6	V	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	
		·	Refer	ence In	puts		
AD05	Vrefh	Reference Voltage High	AVss + 2.5	—	AVdd	V	VREFH = VREF+ VREFL = VREF- (Note 1)
AD05a			3.0	—	3.6	V	VREFH = AVDD VREFL = AVSS = 0
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	(Note 1)
AD06a	-		0	—	0	V	VREFH = AVDD VREFL = AVSS = 0
AD07	Vref	Absolute Reference Voltage	2.5	—	3.6	V	VREF = VREFH - VREFL
AD08	IREF	Current Drain	_	_	10 600	μΑ μΑ	ADC off ADC on
AD09	IAD	Operating Current ⁽²⁾	—	5	—	mA	ADC operating in 10-bit mode (Note 1)
			—	2	—	mA	ADC operating in 12-bit mode (Note 1)
			Ana	log Inp	out	•	
AD12	Vinh	Input Voltage Range Vinн	VINL	_	Vrefh	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC

TABLE 30-57: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

FIGURE 32-4: Vol – 8x DRIVER PINS

