

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.5 ICSP Pins

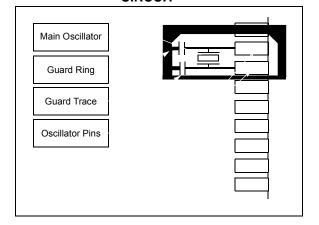
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

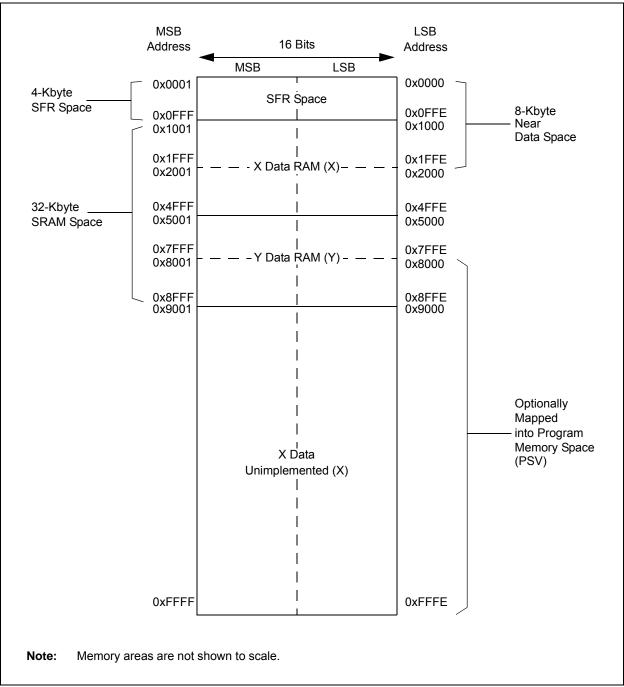
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

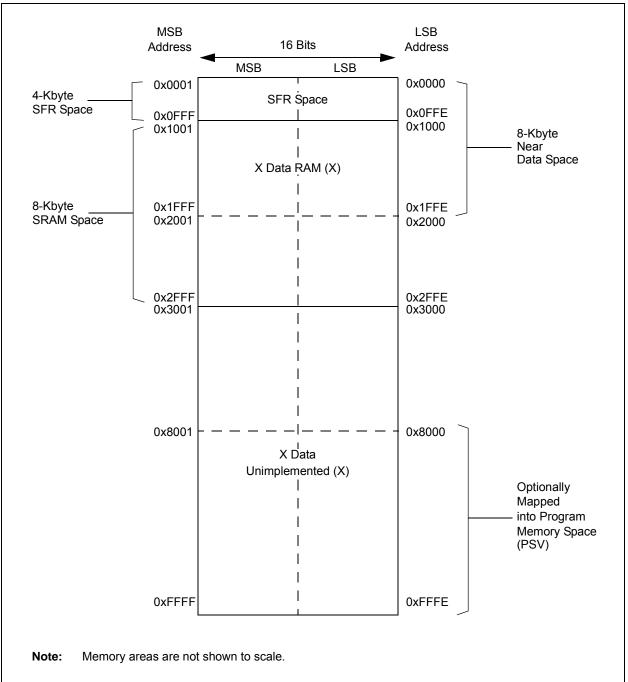
Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT


REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
	DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
hit 1	PND: Dounding Mode Select hit(1)


- bit 1 **RND:** Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding is enabled
 - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0				
bit 15			•				bit 8				
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0				
bit 7							bit (
Legend:											
R = Readable		W = Writable		-	nented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
h:+ 45		on Interview h									
bit 15		on Interrupt bis will clear the l									
		s have no effect		EN bit							
bit 14-12	•	Processor Clo									
	111 = Fcy div										
	110 = Fcy divided by 64										
	101 = Fcy divided by 32										
	100 = FCY divided by 16 011 = FCY divided by 8 (default)										
	011 = FCY divided by 8 (default) 010 = FCY divided by 4										
	001 = FCY divided by 2										
	000 = Fcy div	•									
bit 11	DOZEN: Doze Mode Enable bit ^(2,3)										
					pheral clocks a	nd the process	or clocks				
		-	-	ratio is forced to							
bit 10-8			RC Oscillator	r Postscaler bit	S						
	111 = FRC divided by 256 110 = FRC divided by 64										
	100 = FRC divided by 84 101 = FRC divided by 32										
	100 = FRC divided by 16										
	011 = FRC divided by 8										
	010 = FRC divided by 4										
	001 = FRC divided by 2 000 = FRC divided by 1 (default)										
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)										
	11 = Output divided by 8										
	10 = Reserved										
		livided by 4 (de	efault)								
bit 5	00 = Output d	ted: Read as '	o'								
	•										
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to				
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.						
	DOJENUS				~ ~		<i>.</i>				

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0		5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

U-0 R/W-0 R/W R/W R/W </th <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
U-0 U-0 RW-0 <	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_
- BCH ⁽¹⁾ BCL ⁽¹⁾ BPH BPHL BPLH BPHH	bit 15							bit
bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to sel	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' nn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Current-limit input 1 = Leading-Edge Blanking is not applied to selected current-limit input 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when Selected blanking signal is low 0 = No blanking when PWMxH dupt is high 0 = No blanking when PWMxH dupt signals) when PWMxH output is high 0 = No blanking when PWMxH tow Enable bit 1 = State blanking (of current-limit and/	_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 13 PLR: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is not applied to selected Fault input bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking signal is high 1 = State blanking	bit 7							bit
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 11 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 11 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores fising edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking signal Figh Enable bit 1 = State blanking in Selected Blanking Singal High Enable bit 1 = State blanking (of current	Legend:							
 PHR: PWMxH Rising Edge Trigger Enable bit Rising edge of PWMxH will trigger Leading-Edge Blanking counter	R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL Det Leading-Edge Blanking ignores ralling edge of PWMxL D = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = Leading-Edge Blanking Signal Liph Enable bit⁽¹⁾ 1 = State blanking (or current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No b	-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 FLTLEBEN: Fault Input Leading-Edge Blanking Counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH output is nigh 0 = No bla	bit 15	1 = Rising ed	ge of PWMxH	will trigger Le	ading-Edge Bla			
 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL pLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking when selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH dutput is high 0 = No blanking when PWMxH Low Enable bit 1 = State blanking (of	bit 14	1 = Falling ed	lge of PWMxH	will trigger Le	eading-Edge Bla	0		
bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = No blanking when selected Blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when P	bit 13	1 = Rising ed	ge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high	bit 12	1 = Falling ed	lge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL Ligh Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL output is high 	bit 11	1 = Leading-E	Edge Blanking	is applied to	selected Fault in	nput		
bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 State blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit	bit 10	1 = Leading-E	Edge Blanking	is applied to	selected current	t-limit input		
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is low 	bit 9-6	Unimplemen	ted: Read as '	0'				
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 5	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is high
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 4	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is low
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 3	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 2	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is lo)W
bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL hking (of currer	High Enable I nt-limit and/or	bit Fault input sigr	nals) when PWN	/IxL output is hi	gh
\sim i	bit 0	BPLL: Blanki 1 = State blar	ng in PWMxL I hking (of currer	Low Enable b nt-limit and/or	it Fault input sigr	nals) when PWN	/IxL output is lo	w

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits				
		1 = Invalid sele npares up to Da		6 with EID<17	>			
	•							
	•							
	•							
00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes								

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0			
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15							bit 8			
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	—			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	CSIDL: CRC Stop in Idle Mode bit									
	1 = Discontir	ues module op	eration when		ldle mode					
bit 12-8	Indicates the	 0 = Continues module operation in Idle mode VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7 								
	or 16 when PLEN<4:0> ≤ 7. CRCFUL : CRC FIFO Full bit 1 = FIFO is full									
bit 7	CRCFUL: CR	C FIFO Full bit		1 II O. 1185 8 II			N<4:0> > 7			
	CRCFUL : CF 1 = FIFO is f 0 = FIFO is r	C FIFO Full bit ull lot full RC FIFO Empty empty	t	1 II O. 1163 d II		or o when PLE	N<4:0> > 7			
bit 7 bit 6 bit 5	CRCFUL: CF 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	C FIFO Full bit ull lot full C FIFO Empty empty lot empty RC Interrupt Se	Bit election bit oty; final word	of data is still s	shifting through		N<4:0> > 7			
bit 6	CRCFUL: CF 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt 0 = Interrupt CRCGO: Stat 1 = Starts CF	C FIFO Full bit ull not full C FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is com	⁷ Bit election bit oty; final word plete and CRC	of data is still s	shifting through		N<4:0> > 7			
bit 6 bit 5	CRCFUL: CF 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da 1 = Data wor	C FIFO Full bit ull not full C FIFO Empty mpty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit RC serial shifter ial shifter is turr ata Word Little- d is shifted into	Bit election bit oty; final word plete and CRC ned off Endian Config the CRC star	of data is still s CWDAT results guration bit ting with the LS	shifting through	CRC	N<4:0> > 7			

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<3	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<2	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplen	nented bit, rea	ıd as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTWIN<1:0>	Watchdog Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 pin 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 pin 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN ⁽²⁾	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

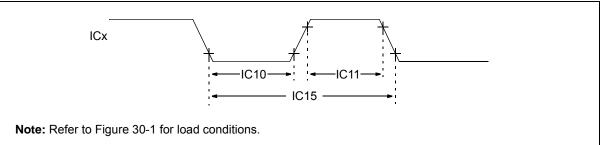
Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Operating Voltage									
DC10	Vdd	Supply Voltage	3.0		3.6	V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	-	_	Vss	V			
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	—	V/ms	0V-1V in 100 ms		

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.


TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol Characteristics Min Typ Max Units Comments							
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10		μF	Capacitor must have a low series resistance (< 1 Ohm)	

Note 1: Typical VCAP voltage = 1.8 volts when VDD \geq VDDMIN.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

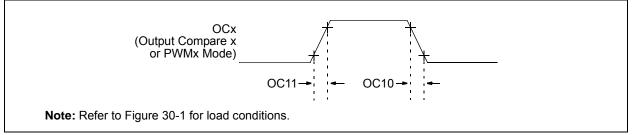


TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	nits Conditions			
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

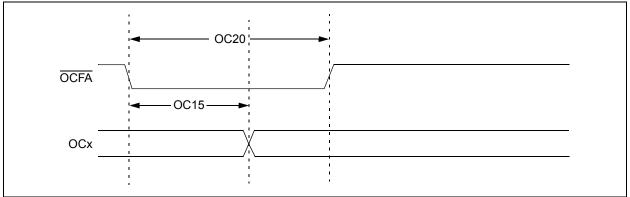


TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_		_	ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	— — — ns See Parameter DO31						

Note 1: These parameters are characterized but not tested in manufacturing.

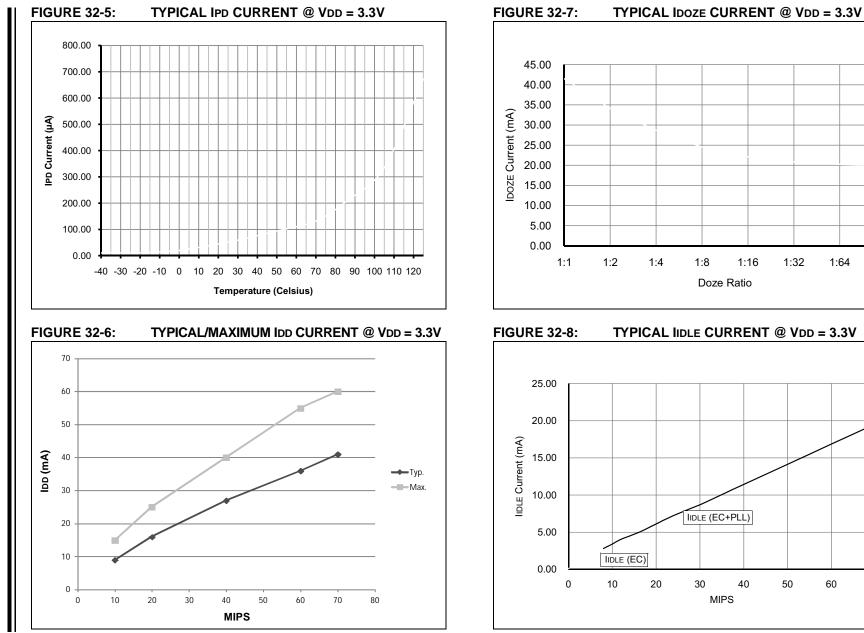
FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. Max. Units				
OC15	TFD	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	TCY + 20		—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

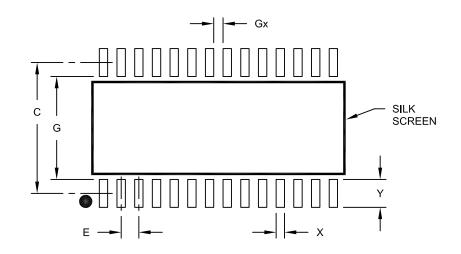

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—		11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.



1:128

70

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units						
Dimension	Dimension Limits			MAX			
Contact Pitch	ontact Pitch E			1.27 BSC			
Contact Pad Spacing	С		9.40				
Contact Pad Width (X28)	Х			0.60			
Contact Pad Length (X28)	Y			2.00			
Distance Between Pads	Gx	0.67					
Distance Between Pads	G	7.40					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS					
D	imension Limits	MIN	NOM	MAX			
Number of Leads	N		64				
Lead Pitch	е		0.50 BSC				
Overall Height	А	-	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	φ	0°	3.5°	7°			
Overall Width	E		12.00 BSC				
Overall Length	D		12.00 BSC				
Molded Package Width	E1	10.00 BSC					
Molded Package Length	D1	10.00 BSC					
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B