

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES (CONTINUED)

			(00																		
	<i>•</i>	(se			-	Re	mappa	ble P	eriphe	erals					~						
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I ² C TM	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	ЪТG	I/O Pins	Pins	Packages
dsPIC33EP32MC504	512	32	4																		
dsPIC33EP64MC504	1024	64	8																		VTLA ⁽⁵⁾ ,
dsPIC33EP128MC504	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
dsPIC33EP256MC504	1024	256	32																	40	UQFN
dsPIC33EP512MC504	1024	512	48																		
dsPIC33EP64MC506	1024	64	8																		
dsPIC33EP128MC506	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	16	3/4	Voo	Voo	53	64	TQFP,
dsPIC33EP256MC506	1024	256	32	3	4	4	0	1	2	2	1	3	2	1	10	3/4	Yes	Yes	55	04	QFN
dsPIC33EP512MC506	1024	512	48																		

 Note 1:
 On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details.

 2:
 Only SPI2 is remappable.

3: INT0 is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X AND PIC24EP64GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0	>	_		ICDIP<2:0	>		—	_	_	—	_	—		4400
IPC36	0888	_	F	PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>		PT	GSTEPIP<2	:0>	—	—	—	-	4440
IPC37	088A	_	—	—	_	_	F	PTG3IP<2:0)>			PTG2IP<2:0>	>	_		PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR				_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_			—		_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	_			—		_	DAE	DOOVR	_	—	—		0000
INTCON4	08C6	_	_	_	_	_	-	_	—	_	_	_	_	—	—	—	SGHT	0000
INTTREG	08C8	Ι	_	_	_		ILR<	3:0> VECNUM<7:0>					0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—	
bit 15	I	1	1				bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit (
lagandi		SO - Sottab	la Only hit				
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	
		1 - Dit 13 30					lowin
bit 15	WR: Write Co	ontrol bit(1)					
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is
	cleared b	y hardware o	nce the operati	on is complete			
	-		ration is comple	ete and inactive	9		
bit 14	WREN: Write		n/erase operati	000			
			/erase operatio				
oit 13			Error Flag bit ⁽¹⁾				
	1 = An impro	per program o	r erase sequend		rmination has oc	curred (bit is se	t automatically
		et attempt of th	e WR bit) operation com	olotod pormally			
bit 12			le Control bit ⁽²⁾	Sieteu normaliy			
			r goes into Star	ndbv mode duri	ina Idle mode		
			r is active durin				
bit 11-4	Unimplemen	ted: Read as	'0'				
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)			
	1111 = Rese						
	1110 = Rese 1101 = Rese						
	1100 = Rese						
	1011 = Rese						
	1010 = Rese 0011 = Memo		e operation				
	0010 = Rese	rved	-				
			ord program ope	eration ⁽⁵⁾			
	0000 = Rese	rvea					
	These bits can onl	-					
	If this bit is set, the (TVREG) before Fla				d upon exiting lo	dle mode, there	is a delay
	All other combinati	•	•				
. .				in ploinenteu.			
	Execution of the P	wrsav instruc	tion is ianored	while any of th	e NVM operatio	ns are in progr	ess.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15			•				bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit (
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h:+ 45		on Interview h					
bit 15		on Interrupt bis will clear the l					
		s have no effect		EN bit			
bit 14-12	•	Processor Clo					
	111 = Fcy div						
	110 = Fcy div	vided by 64					
	101 = Fcy div						
	100 = FCY div	vided by 16 vided by 8 (defa	oult)				
	011 = FCY div 010 = FCY div		auit)				
	001 = FCY div						
	000 = Fcy div	•					
bit 11		e Mode Enable					
					pheral clocks a	nd the process	or clocks
		-	-	ratio is forced to			
bit 10-8			RC Oscillator	r Postscaler bit	S		
	111 = FRC di 110 = FRC di						
	101 = FRC di						
	100 = FRC d i	vided by 16					
	011 = FRC di						
	010 = FRC di 001 = FRC di	2					
		vided by 2 vided by 1 (de	fault)				
bit 7-6			-	r Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output d						,
	10 = Reserve						
		livided by 4 (de	efault)				
bit 5	00 = Output d	ted: Read as '	o'				
	•						
	e DOZE<2:0> b ZE<2:0> are ig		written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2: This	s bit is cleared	when the ROI I	oit is set and a	an interrupt occ	urs.		
	DOJENUS				~ ~		<i>.</i>

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽²⁾	AD1MD
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	1 = Timer5 m	5 Module Disal odule is disable odule is enable	ed				
bit 14	1 = Timer4 m	4 Module Disal odule is disable odule is enable	ed				
bit 13	1 = Timer3 m	3 Module Disal odule is disable odule is enable	ed				
bit 12	1 = Timer2 m	2 Module Disal odule is disable odule is enable	ed				
bit 11	1 = Timer1 m	1 Module Disal odule is disable odule is enable	ed				
bit 10	1 = QEI1 mod	11 Module Disa Iule is disablec Iule is enabled					
bit 9	1 = PWM mod	/M Module Dis dule is disabled dule is enabled	1				
bit 8	Unimplemen	ted: Read as '	כי				
bit 7	1 = I2C1 mod	1 Module Disal ule is disabled ule is enabled	ble bit				
bit 6	1 = UART2 m	2 Module Disa odule is disabl odule is enable	ed				
bit 5	1 = UART1 m	1 Module Disa odule is disabl odule is enable	ed				
bit 4	1 = SPI2 mod	2 Module Disa lule is disabled lule is enabled	ole bit				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP118	3R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	_	—	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP120)R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		ENFLTB
bit 15		COOLDE	OUTOLLZ	OUTOLLI	OUTOLLU		bit 8
Sit 10							bit 0
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Read	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit			
		ompare x Halts					
	•	compare x conti	•		ode		
bit 12-10)>: Output Com	pare x Clock S	elect bits			
	111 = Periph 110 = Reserv	eral clock (FP)					
	101 = PTGO						
		is the clock so			hronous clock	is supported)	
		is the clock so					
		(is the clock so (is the clock so					
		is the clock so					
bit 9	Unimplemen	ted: Read as '0)'				
bit 8	ENFLTB: Fau	ult B Input Enab	le bit				
		compare Fault B compare Fault B					
bit 7	-	ult A Input Enab					
	1 = Output C	ompare Fault A compare Fault A	input (OCFA)				
bit 6	•	ted: Read as '0	• • •				
bit 5	OCFLTB: PW	M Fault B Con	dition Status bit				
		ult B condition of Fault B condition					
bit 4		/M Fault A Cond	•				
		ult A condition of Fault A condition					
Note 1:	OCxR and OCxF						
Note 1. 2:	Each Output Cor			-	irce. See Secti	on 24.0 "Perin	heral Trigger
	Generator (PTG						
	PTGO4 = OC1						
	PTGO5 = OC2						
	PTGO6 = OC3 PTGO7 = OC4						

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-			DTR)	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTR	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDTR	x<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDT	Rx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits			
		1 = Invalid sele npares up to Da		6 with EID<17	>		
	•						
	•						
	•						
		npares up to Da s not compare	•	7 with EID<0>			

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	ADDMAEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—		—	—	—	DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Levend										
Legend:	le hit		.:.		mented bit meet					
R = Readab		W = Writable b	DIT	•	mented bit, read					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15-9	Unimplemen	tod: Poad as 'n	,							
bit 8	-	Jnimplemented: Read as '0' ADDMAEN: ADC1 DMA Enable bit								
					ster for transfer	to DAM using				
				0	ADC1BUFF reg	0				
bit 7-3	Unimplemen	ted: Read as '0)'							
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA Bu	uffer Locations	per Analog Inp	ut bits				
	111 = Allocat	es 128 words o	f buffer to eac	h analog input						
		es 64 words of		U 1						
		es 32 words of		• .						
		es 16 words of		U 1						
		es 8 words of b es 4 words of b								
		es 2 words of b								
		es 1 word of bu		Û Î						
				U						

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown			
			-							
bit 15	HLMS: High	or Low-Level N	/lasking Select	bits						
	•		•		erted ('0') compa	rator signal from	m propagatin			
					erted ('1') compa					
bit 14	Unimplemen	ted: Read as	ʻ0'							
bit 13	OCEN: OR G	Sate C Input Er	nable bit							
	1 = MCI is co	nnected to OR	t gate							
	0 = MCI is no	CI is not connected to OR gate								
bit 12		OCNEN: OR Gate C Input Inverted Enable bit								
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 									
			-	jate						
bit 11	OBEN: OR Gate B Input Enable bit									
		nnected to OR	gate							
bit 10	0 = MBI is no	t connected to	gate OR gate	e hit						
bit 10	0 = MBI is no OBNEN: OR	t connected to Gate B Input I	gate OR gate nverted Enable							
bit 10	0 = MBI is no OBNEN: OR 1 = Inverted I	t connected to	gate OR gate nverted Enable ed to OR gate							
bit 10 bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect	gate OR gate nverted Enable ed to OR gate nected to OR g							
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	t connected to Gate B Input I MBI is connect MBI is not conr Gate A Input Er nnected to OR	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate							
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate	jate						
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable	jate e bit						
bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate	jate e bit						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com	gate OR gate nverted Enable ed to OR gate nected to OR gate bit gate OR gate nverted Enable ed to OR gate	gate e bit gate						
bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir	gate OR gate nverted Enable ed to OR gate nected to OR gate bit gate OR gate nverted Enable nected to OR gate nected to OR gate	gate e bit gate e bit						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not conn Gate Output Ir ANDI is connect	gate OR gate nverted Enable ed to OR gate nected to OR gate able bit gate OR gate nverted Enable nected to OR gate nected to OR gate	gate e bit gate e bit e						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect ANDI is not connect	gate OR gate nverted Enable ed to OR gate nected to OR g able bit gate OR gate Nverted Enable nected to OR gate nverted Enable cted to OR gat	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect Gate Output Ir ANDI is not connect Gate Output E connected to O	gate OR gate nverted Enable ed to OR gate nected to OR g able bit gate OR gate nverted Enable ed to OR gate nected to OR gat nected to OR gat	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is connect ANDI is not con Gate Output E connected to O tot connected t	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I NAGS: AND 1 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connected ANDI is not connected ANDI is not connected to Gate Output E connected to O tot connected to Gate C Input E	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected bit R gate o OR gate nable bit	gate e bit gate e bit e						
bit 9 bit 8 bit 7 bit 6	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is connect ANDI is not con Gate Output E connected to O tot connected to Gate C Input E	a gate OR gate Nverted Enable ed to OR gate nected to OR gate OR gate OR gate Nverted Enable ed to OR gate nected to OR gate nected to OR gate the or oR gate nected to OR gate cable bit R gate to OR gate Enable bit D gate	gate e bit gate e bit e						
bit 9 bit 8 bit 7 bit 6 bit 5	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no 0 = MCI is no 0 = MCI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connected to Gate Output E connected to O tot connected to Gate C Input E mnected to AN of connected to	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gate the dto OR gate nected to OR gate chable bit R gate to OR gate nable bit R gate to OR gate anable bit D gate AND gate	gate e bit gate e gate						
bit 9 bit 8 bit 7 bit 6	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no ACEN: AND 1 = MCI is co 0 = MCI is no ACNEN: AND	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is connect ANDI is not con Gate Output E connected to O tot connected to Gate C Input E	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gate the dto OR gate nected to OR gate co OR gate nable bit R gate o OR gate anable bit D gate AND gate	gate e bit gate e bit gate						

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM

TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)