

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XBREVx value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

				(,			
R/SO-0 ⁽¹	⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾			—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	—	—	<u> </u>	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
						_	
Legend:		SO = Settab	le Only bit				
R = Reada	ble bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ired	x = Bit is unkn	iown
bit 15	WR: Write Co 1 = Initiates a cleared by 0 = Program	ntrol bit ⁽¹⁾ a Flash memo y hardware o or erase oper	ory program or nce the operati ation is comple	erase operation on is complete ate and inactive	on; the operatio	n is self-timed	and the bit is
bit 14	WREN: Write 1 = Enables F 0 = Inhibits Fl	Enable bit ⁽¹⁾ ⁻ lash program ash program/	n/erase operati ⁄erase operatio	ons			
bit 13	WRERR: Writ 1 = An improp on any se 0 = The progr	e Sequence E per program of t attempt of th ram or erase	Error Flag bit ⁽¹⁾ rerase sequence e WR bit) operation comp	ce attempt or ter	mination has oc	curred (bit is se	t automatically
bit 12	NVMSIDL: N\ 1 = Flash volt 0 = Flash volt	/M Stop in Idl age regulator age regulator	e Control bit ⁽²⁾ goes into Star is active durin	ndby mode duri g Idle mode	ng Idle mode		
bit 11-4	Unimplement	ted: Read as	'0'	-			
bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,3,4) 1111 = Reserved 1100 = Reserved 1100 = Reserved 1011 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 1010 = Reserved 0011 = Memory page erase operation 0010 = Reserved 0011 = Memory double-word program operation ⁽⁵⁾ 0000 = Reserved							
Note 1: 2: 3: 4: 5:	These bits can only If this bit is set, the (TVREG) before Fla All other combination Execution of the PV Two adjacent word	/ be reset on a re will be mini sh memory be ons of NVMO wRSAV instruct s on a 4-word	a POR. mal power sav ecomes operat P<3:0> are uni tion is ignored I boundary are	rings (IIDLE) and ional. implemented. while any of the programmed d	d upon exiting lo e NVM operatio uring execution	the mode, there ns are in progra	is a delay ess. on.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP		_	_	_	—
bit 15				·			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		_	_	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:	L:1		L:1			(0)	
R = Readable	DIT	vv = vvritable	DIT		mented bit, read	as '0'	
-n = value at I	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkr	nown
hit 15		ntorrunt Enable	, hit				
DIL 15		and associate	d IF hits are e	nahled			
	0 = Interrupts	are disabled,	but traps are s	still enabled			
bit 14	DISI: DISI Ir	nstruction Statu	s bit				
	1 = DISI ins	truction is activ	e				
	0 = DISI ins i	truction is not a	ictive				
bit 13	SWTRAP: So	oftware Trap St	atus bit				
	1 = Software	trap is enabled	4				
hit 12-3		ted: Read as '	 				
bit 2	INT2FP: Exte	ernal Interrupt 2	∘ PEdge Detect	Polarity Selec	et bit		
	1 = Interrupt	on negative ed	ae				
	0 = Interrupt	on positive edg	le				
bit 1	INT1EP: Exte	ernal Interrupt ?	Edge Detect	Polarity Selec	ct bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	e				
bit 0	INTOEP: Exte	ernal Interrupt () Edge Detect	Polarity Selec	ct bit		
	\perp = interrupt	on negative ed	ye Ie				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15				•		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>				<u> </u>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ROON: Refer	ence Oscillato	Output Enab	ole bit			
	1 = Reference 0 = Reference	e oscillator outr e oscillator outr	but is enabled	on the REFCL	.K pin ⁽²⁾		
bit 14	Unimplemen	ted: Read as '	o'				
bit 13	ROSSLP: Re	ference Oscilla	tor Run in Sle	ep bit			
	1 = Reference	e oscillator outp	out continues	to run in Sleep			
	0 = Reference	e oscillator outp	out is disabled	l in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator	crystal is used	as the refere	nce clock			
hit 11_8		Peference Os	cillator Divide	r hite(1)			
Dit 11-0	1111 = Refer	ence clock divi	ded by 32 76	R			
	1110 = Refer	ence clock divi	ded by 16,384	4			
	1101 = Refer	ence clock divi	ded by 8,192				
	1100 = Refer	ence clock divi	ded by 4,096				
	1011 = Refer	ence clock divi	ded by 2,048				
	1010 = Relef	ence clock divi	ded by 1,024 ded by 512				
	1000 = Refer	ence clock divi	ded by 256				
	0111 = Refer	ence clock divi	ded by 128				
	0110 = Refer	ence clock divi	ded by 64				
	0101 = Refer	ence clock divi	ded by 32				
	0100 = Refer	ence clock divi	ded by 16				
	0011 = Refer	ence clock divi	ded by 6 ded by 4				
	0001 = Refer	ence clock divi	ded by 2				
	0000 = Refer	ence clock	-				
bit 7-0	Unimplemen	ted: Read as '	כי				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	—	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		_		_		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10	PWM3MD: P	WM3 Module D)isable bit ⁽¹⁾				
	1 = PWM3 mo	odule is disable	ed				
	0 = PWM3 mo	odule is enable	d				
bit 9	PWM2MD: P	WM2 Module D	isable bit ⁽¹⁾				
	1 = PWM2 mo	odule is disable	ed				
	0 = PWM2 mc	odule is enable	d				
bit 8	PWM1MD: P	WM1 Module D	isable bit ⁽¹⁾				
	1 = PWM1 mo	odule is disable	ed				
	0 = PWM1 mo	odule is enable	d				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC3R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	IC4R<6:0>: (see Table 2	Assign Input Ca	pture 4 (IC4) selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
bit 7		nput tied to vss	, 0,				
bit 6-0		Assign Input Ca	o unture 3 (IC3)) to the Correspo	ondina RPn P	in hits	
bit 0 0	(see Table 1	11-2 for input pin	selection nu	mbers)		in bits	
	1111001 =	Input tied to RPI	121	,			
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP39F	२<5:0>		
bit 15	•						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP38F	२<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits						

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RP40	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

·							
R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	PENH: PWM	(H Output Pin (Ownership bit				
	1 = PWMx mc	dule controls I	PWMxH pin WMx⊟ pin				
hit 11							
DIL 14	1 = DM/Mx mc	a Output Pin C					
	1 = PWWX IIIC 0 = GPIO model	dule controls P	WMxL pin				
hit 13		H Output Pin I	Polarity bit				
	1 = PWMxH r	in is active-low	/				
	0 = PWMxH p	oin is active-hig	h				
bit 12	POLL: PWMx	L Output Pin F	olarity bit				
	1 = PWMxL p	in is active-low	,				
	0 = PWMxL p	in is active-hig	h				
bit 11-10	PMOD<1:0>:	PWMx # I/O P	in Mode bits ⁽¹)			
	11 = Reserve	d; do not use					
	10 = PWMx I/	O pin pair is in	the Push-Pul	I Output mode			
	01 = PWWx I/ 00 = PWMx I/	O pin pair is in O pin pair is in	the Complem	nt Output mod entary Output	mode		
hit 9	OVRENH: Ov	erride Enable i	for PWMxH P	in bit	mouo		
bit o	1 = OVRDAT	<1> controls or	itput on PWM	xH nin			
	0 = PWMx ge	nerator control	s PWMxH pin				
bit 8	OVRENL: Ov	erride Enable f	or PWMxL Pi	n bit			
	1 = OVRDAT	<0> controls ou	Itput on PWM	xL pin			
	0 = PWMx ge	nerator control	s PWMxL pin				
bit 7-6	OVRDAT<1:0	>: Data for PW	/MxH, PWMxl	L Pins if Overr	ide is Enabled b	its	
	If OVERENH	= 1, PWMxH is	s driven to the	state specifie	d by OVRDAT<	1>.	
	If OVERENL :	= 1, PWMxL is	driven to the	state specified	l by OVRDAT<0	>.	
bit 5-4	FLTDAT<1:0>	Data for PW	MxH and PWI	MxL Pins if FL	TMOD is Enable	ed bits	
	If Fault is activ	ve, PWMxH is	driven to the s	state specified	by FLTDAT<1>		
hit 2 0		VE, FVVIVIXL IS (UY FLIDAISUS.	hita	
UIL 3-2	LUAI <1:0>			IXL PILIS IT ULN			
	If current-limit	is active. PWN	/IxL is driven t	to the state sp	ecified by CLDA	T<0>.	
Note 1: The	ese bits should i	not be changed	d after the PW	Mx module is	enabled (PTEN	= 1).	

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-7: VEL1CNT: VELOCITY COUNTER 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			VELC	NT<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			VELC	NT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								

bit 15-0 VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8: INDX1CNTH: INDEX COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCN	T<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

REGISTER 17-9: INDX1CNTL: INDEX COUNTER 1 LOW WORD REGISTER

'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	:	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

-n = Value at POR

x = Bit is unknown

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	INTTMR<31:24>											
bit 15	bit 15 bit 8											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			INTTM	R<23:16>								
bit 7							bit 0					
Legend:												
R = Readable b	bit	W = Writable bi	it	U = Unimplem	nented bit, read	d as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	1R<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ bit 4-2 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽³⁾ 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to the value of 1:1.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBP<5:0>: F	IFO Buffer Poir	nter bits				
	011111 = RE	331 buffer					
	•	50 bullet					
	•						
	•						
	000001 = TR	B1 buffer					
	000000 = TR	RB0 buffer					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	ter bits			
	011111 = RE	331 buffer					
	011110 = RE	330 buffer					
	•						
	•						
	•						
	000001 = TR	(B1 buffer					
	$000000 = \mathbf{IR}$						

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R = Readable bi	R = Readable bit W = Writable bit U = Unimplemented bit, read as 'U' n = Value at POP $(1' = \text{Pit is set})$ $(0' = \text{Pit is cleared})$ $x = \text{Pit is unknown}$						
Legend:							
bit 7							bit 0
			Ву	rte 2			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15							bit 8
			Ву	rte 3			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 4			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	
-							

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

R/W-0	R/W	-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFC	G1	VCFG0		_	CSCNA	CHPS1	CHPS0
bit 15								bit 8
R-0	R/W	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMP	14	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7								bit 0
Legend:								
R = Readable	e bit		W = Writable	bit	U = Unimpl	emented bit, read	d as '0'	
-n = Value at	POR		'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unk	nown
bit 15-13	VCFG<	2:0>:	Converter Volt	age Reference	Configuratio	on bits		
	Value		VREFH	VREFL				
	000		Avdd	Avss				
	001	Ext	ernal VREF+	Avss				
	010		Avdd	External VRE	F-			
	011	Ext	ernal VREF+	External VRE	F-			
	lxx		Avdd	Avss				
bit 12-11	Unimple	emen	ted: Read as '	0'				
bit 10	CSCNA	: Inpu	t Scan Select	bit				
	1 = Sca 0 = Doe	ns inp s not	outs for CH0+ o scan inputs	luring Sample N	<i>I</i> UXA			
bit 9-8	CHPS<	1:0>:	Channel Selec	t bits				
	<u>In 12-bit</u>	tmode	e (AD21B = 1)	, the CHPS<1:0	> bits are U	nimplemented ar	nd are Read as	<u>'0':</u>
	1x = Co 01 = Co 00 = Co	onverts onverts onverts	s CH0, CH1, C s CH0 and CH s CH0	H2 and CH3 1				
bit 7	BUFS:	Buffer	Fill Status bit	onlv valid wher	BUFM = 1)		
	1 = AD	C is cı	urrently filling t	ne second half c	of the buffer;	the user applicat	ion should acc	ess data in the
	first 0 = AD sec	t half o C is c ond h	of the buffer urrently filling alf of the buffe	the first half of t r	the buffer; tl	ne user applicatio	on should acce	ess data in the
bit 6-2	SMPI<4	: 0>:	ncrement Rate	bits				
	When A	DDM/	AEN = 0:					
	x1111 =	= Gen	erates interrup	t after completion	on of every	16th sample/conv	ersion operation	on
	x1110 =	= Gen	erates interrup	t after completion	on of every	15th sample/conv	ersion operation	on
	•							
	•							
	x0001 = x0000 =	= Gen = Gen	erates interrup erates interrup	t after completion t after completion	on of every 2 on of every 3	2nd sample/conv sample/conversic	ersion operation	n
	When A	DDM/	AEN = 1:					
	11111 =	= Incre	ements the DM	IA address after	completion	of every 32nd sa	ample/conversi	ion operation
	11110 =	= Incre	ements the DM	IA address after	r completion	of every 31st sa	mple/conversion	on operation
	•							
	•							
	00001 = 00000 =	= Incre = Incre	ements the DM ements the DM	IA address aftei IA address aftei	^r completion ^r completion	of every 2nd sar	nple/conversio /conversion op	on operation peration

. . ACOND. ADCA CONTROL DECISTED 2

AC CH	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C < TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	Τρυ	Power-up Period	—	400	600	μS		
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc			Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C	
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS		
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C	
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS		
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	_	70	μS		

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

Ρ

Packaging	
Details	505
Marking	. 479, 481
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	175
Available Peripherals	175
Available Pins	175
Control	
Control Registers	183
Input Mapping	
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	178
Selectable Input Sources	177
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	163
Clock Frequency	
Clock Switching	163
Instruction-Based Modes	163
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	
Data Access from Program Memory Using	
Table Instructions	
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	65
CRC	88
CTMU	97
DMAC	98
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
FCAN1 (When WIN (C1CTRI 1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (WIN (C1CTRL1) = 1) for	00
	86
12C1 and 12C2	00
Input Capture 1 through Input Capture 4	02
	70
	60
	09
	74
(dsPIC33EPXXXMC20X Devices)	/1
Interrupt Controller	
(dsPIC33EPXXXMC50X Devices)	73
Interrupt Controller	
(PIC24EPXXXGP20X Devices)	66
Interrupt Controller	
(PIC24EPXXXMC20X Devices)	67
JTAG Interface	97
NVM	93
Op Amp/Comparator	97
Output Compare 1 through Output Compare 4	77
Peripheral Pin Select Input	
(dsPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	
(dsPIC33EPXXXMC20X Devices)	92
Peripheral Pin Select Input	
(dsPIC33EPXXXMC50X Devices)	91
Peripheral Pin Select Input	
(PIC24EPXXXGP20X Devices)	90
Peripheral Pin Select Input	
(PIC24EPXXXMC20X Devices)	90
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC202/502.	
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503	
	88
Perinheral Pin Select Output	00
/dePIC33EDXXXCP/MC204/504	
PIC24EPXXXGP/MC204 Devices)	80
Poriphoral Pin Soloct Output	03
(USFICIDEFAAAGE/IVIC200/000, DIC24EDXXCD/MC206 Dovidera)	00
	09
	95
	96
	95
PIND (PIC24EPXXXGP20X Devices)	94