



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Decalis                    |                                                                                  |
|----------------------------|----------------------------------------------------------------------------------|
| Product Status             | Active                                                                           |
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                             |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                    |
| Number of I/O              | 21                                                                               |
| Program Memory Size        | 256КВ (85.5К х 24)                                                               |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 16K × 16                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 6x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                                   |
| Supplier Device Package    | 28-SSOP                                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202-i-ss |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

#### FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

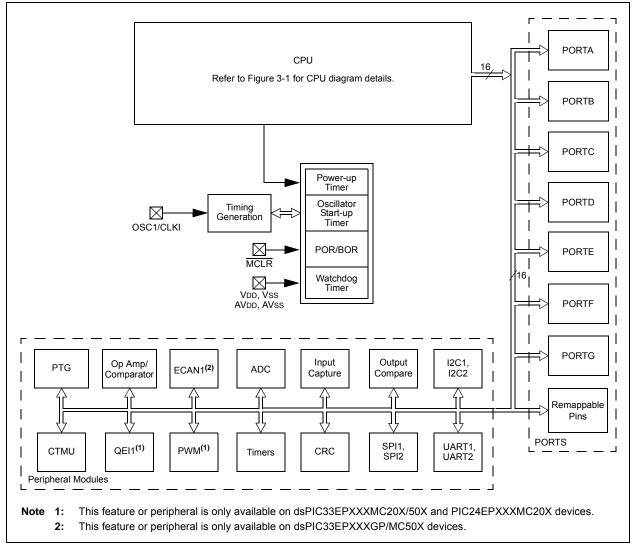
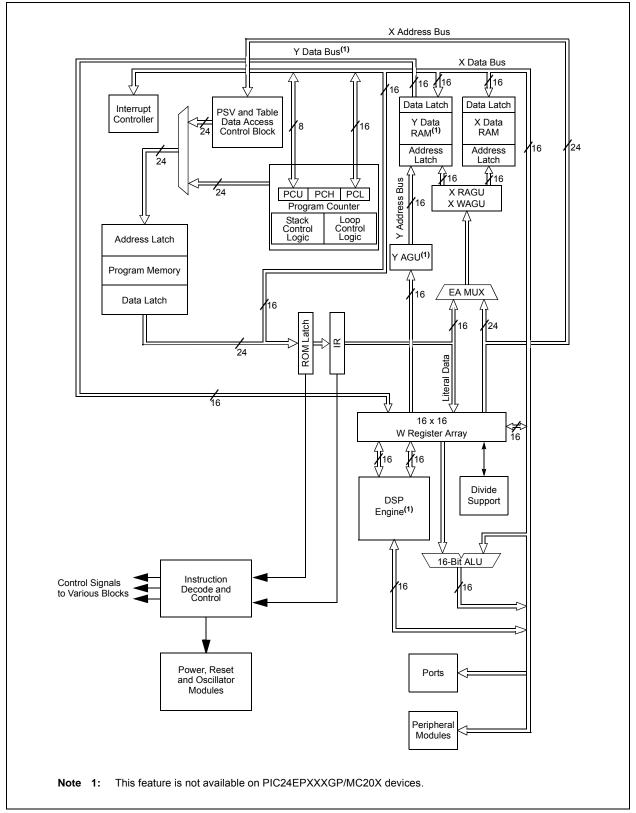




FIGURE 3-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X CPU BLOCK DIAGRAM



## 3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

| Register(s) Name                                      | Description                                               |
|-------------------------------------------------------|-----------------------------------------------------------|
| W0 through W15                                        | Working Register Array                                    |
| ACCA, ACCB                                            | 40-Bit DSP Accumulators                                   |
| PC                                                    | 23-Bit Program Counter                                    |
| SR                                                    | ALU and DSP Engine STATUS Register                        |
| SPLIM                                                 | Stack Pointer Limit Value Register                        |
| TBLPAG                                                | Table Memory Page Address Register                        |
| DSRPAG                                                | Extended Data Space (EDS) Read Page Register              |
| DSWPAG                                                | Extended Data Space (EDS) Write Page Register             |
| RCOUNT                                                | REPEAT Loop Count Register                                |
| DCOUNT <sup>(1)</sup>                                 | DO Loop Count Register                                    |
| DOSTARTH <sup>(1,2)</sup> , DOSTARTL <sup>(1,2)</sup> | DO Loop Start Address Register (High and Low)             |
| DOENDH <sup>(1)</sup> , DOENDL <sup>(1)</sup>         | DO Loop End Address Register (High and Low)               |
| CORCON                                                | Contains DSP Engine, DO Loop Control and Trap Status bits |

#### TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

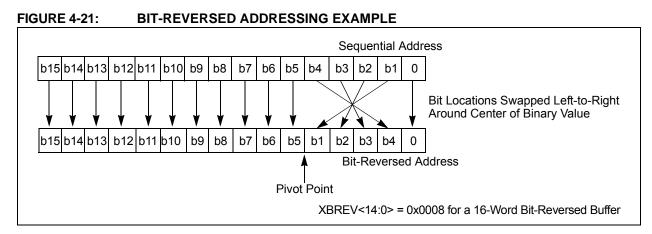
### TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11  | Bit 10 | Bit 9 | Bit 8 | Bit 7    | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1   | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|---------|---------|--------|-------|-------|----------|---------|---------|---------|---------|--------|---------|--------|---------------|
| INTCON1      | 08C0  | NSTDIS | OVAERR | OVBERR | COVAERR | COVBERR | OVATE  | OVBTE | COVTE | SFTACERR | DIV0ERR | DMACERR | MATHERR | ADDRERR | STKERR | OSCFAIL |        | 0000          |
| INTCON2      | 08C2  | GIE    | DISI   | SWTRAP | _       | _       | _      | _     | _     | _        | —       | _       | _       | —       | INT2EP | INT1EP  | INT0EP | 8000          |
| INTCON3      | 08C4  |        | _      | _      | —       | _       | _      |       | _     | _        | —       | DAE     | DOOVR   | —       | _      | _       |        | 0000          |
| INTCON4      | 08C6  |        | _      |        |         |         | Ι      | _     |       |          | —       | _       |         | —       |        |         | SGHT   | 0000          |
| INTTREG      | 08C8  | _      | _      | _      | _       |         | ILR<   | 3:0>  |       |          |         |         | VECNU   | M<7:0>  |        |         |        | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| TABLE 4 | 4-31: | PER | IPHERA | L PIN S | ELECT | INPUT F | REGISTI | ER MAP | FOR ds | sPIC33E | EPXXXG | P50X D | EVICES | SONLY |  |
|---------|-------|-----|--------|---------|-------|---------|---------|--------|--------|---------|--------|--------|--------|-------|--|
|         |       |     |        |         |       |         |         |        |        |         |        |        |        |       |  |

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11     | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3      | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|------------|--------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|---------------|
| RPINR0       | 06A0  | —      |        |        |        | INT1R<6:0> |        |       |       | _     | _     | —     | —     | —          | —     | —     | _     | 0000          |
| RPINR1       | 06A2  |        | _      | _      | _      | _          | _      | _     | _     | _     |       |       |       | INT2R<6:0> | •     |       |       | 0000          |
| RPINR3       | 06A6  |        | _      | _      | _      | _          | _      | _     | _     | _     |       |       | ٦     | [2CKR<6:0  | >     |       |       | 0000          |
| RPINR7       | 06AE  |        |        |        |        | IC2R<6:0>  |        |       |       | _     |       |       |       | IC1R<6:0>  |       |       |       | 0000          |
| RPINR8       | 06B0  |        |        |        |        | IC4R<6:0>  |        |       |       | _     |       |       |       | IC3R<6:0>  |       |       |       | 0000          |
| RPINR11      | 06B6  |        | _      | _      | _      | _          | _      | _     | _     | _     |       |       | (     | DCFAR<6:0  | >     |       |       | 0000          |
| RPINR18      | 06C4  |        | _      | _      | _      | _          | _      | _     | _     | _     |       |       | ι     | J1RXR<6:0  | >     |       |       | 0000          |
| RPINR19      | 06C6  |        | _      | _      | _      | _          | _      | _     | _     | _     |       |       | ι     | J2RXR<6:0  | >     |       |       | 0000          |
| RPINR22      | 06CC  |        |        |        | S      | CK2INR<6:0 | )>     |       |       | _     |       |       | :     | SDI2R<6:0> | •     |       |       | 0000          |
| RPINR23      | 06CE  | _      | _      | _      | —      | —          | _      | _     | —     | —     | —     |       |       |            |       | 0000  |       |               |
| RPINR26      | 06D4  | —      | _      | _      | -      | _          | _      | —     |       | —     |       |       | (     | C1RXR<6:0  | >     |       |       | 0000          |


Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### **TABLE 4-32:** PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

| File Name | Addr. | Bit 15 | Bit 14       | Bit 13       | Bit 12 | Bit 11     | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6       | Bit 5 | Bit 4     | Bit 3      | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|-------|--------|--------------|--------------|--------|------------|--------|-------|-------|-------|-------------|-------|-----------|------------|-------|-------|-------|---------------|
| RPINR0    | 06A0  | _      |              |              |        | INT1R<6:0> |        |       |       | —     | —           | —     | —         | —          | —     | —     | _     | 0000          |
| RPINR1    | 06A2  |        | _            | _            | _      | _          | _      | _     | _     | _     | INT2R<6:0>  |       |           |            |       |       |       | 0000          |
| RPINR3    | 06A6  |        | _            |              |        |            |        |       |       | _     | T2CKR<6:0>  |       |           |            |       |       | 0000  |               |
| RPINR7    | 06AE  |        |              | IC2R<6:0>    |        |            |        |       |       | _     |             |       |           | IC1R<6:0>  |       |       |       | 0000          |
| RPINR8    | 06B0  |        |              | IC4R<6:0>    |        |            |        |       |       | _     |             |       |           | IC3R<6:0>  |       |       |       | 0000          |
| RPINR11   | 06B6  |        | _            | _            | _      | _          | _      | _     | _     | _     |             |       | (         | DCFAR<6:0  | >     |       |       | 0000          |
| RPINR12   | 06B8  |        |              |              |        | FLT2R<6:0> | •      |       |       | _     | FLT1R<6:0>  |       |           |            |       |       | 0000  |               |
| RPINR14   | 06BC  |        |              |              | (      | QEB1R<6:0  | >      |       |       | _     | QEA1R<6:0>  |       |           |            |       |       | 0000  |               |
| RPINR15   | 06BE  |        |              |              | Н      | OME1R<6:0  | )>     |       |       | _     | INDX1R<6:0> |       |           |            |       |       | 0000  |               |
| RPINR18   | 06C4  |        | _            | _            | _      | _          | _      | _     | _     | _     | U1RXR<6:0>  |       |           |            |       |       | 0000  |               |
| RPINR19   | 06C6  |        | _            | _            | _      | _          | _      | _     | _     | _     |             |       | ι         | J2RXR<6:0  | >     |       |       | 0000          |
| RPINR22   | 06CC  | _      |              |              | S      | CK2INR<6:( | )>     |       |       | —     |             |       |           | SDI2R<6:0> | •     |       |       | 0000          |
| RPINR23   | 06CE  | _      | —            | —            |        | —          | —      |       | —     | —     |             |       |           | SS2R<6:0>  |       |       |       | 0000          |
| RPINR26   | 06D4  | _      |              |              |        |            |        | —     | —     |       |             | (     | C1RXR<6:0 | >          |       |       | 0000  |               |
| RPINR37   | 06EA  | _      | SYNCI1R<6:0> |              |        |            |        |       | —     | —     | —           | —     | —         |            |       |       | 0000  |               |
| RPINR38   | 06EC  | _      | DTCMP1R<6:0> |              |        |            |        |       | —     |       |             |       |           |            | 0000  |       |       |               |
| RPINR39   | 06EE  | _      |              | DTCMP3R<6:0> |        |            |        |       | _     |       |             | D     | CMP2R<6:  | 0>         |       |       | 0000  |               |

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X



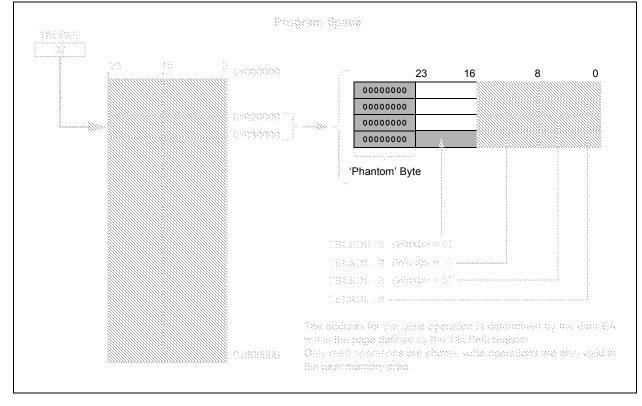
## TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

|    |    | Norma | al Addres | SS      |    |    | Bit-Rev | ersed Ac | ldress  |
|----|----|-------|-----------|---------|----|----|---------|----------|---------|
| A3 | A2 | A1    | A0        | Decimal | A3 | A2 | A1      | A0       | Decimal |
| 0  | 0  | 0     | 0         | 0       | 0  | 0  | 0       | 0        | 0       |
| 0  | 0  | 0     | 1         | 1       | 1  | 0  | 0       | 0        | 8       |
| 0  | 0  | 1     | 0         | 2       | 0  | 1  | 0       | 0        | 4       |
| 0  | 0  | 1     | 1         | 3       | 1  | 1  | 0       | 0        | 12      |
| 0  | 1  | 0     | 0         | 4       | 0  | 0  | 1       | 0        | 2       |
| 0  | 1  | 0     | 1         | 5       | 1  | 0  | 1       | 0        | 10      |
| 0  | 1  | 1     | 0         | 6       | 0  | 1  | 1       | 0        | 6       |
| 0  | 1  | 1     | 1         | 7       | 1  | 1  | 1       | 0        | 14      |
| 1  | 0  | 0     | 0         | 8       | 0  | 0  | 0       | 1        | 1       |
| 1  | 0  | 0     | 1         | 9       | 1  | 0  | 0       | 1        | 9       |
| 1  | 0  | 1     | 0         | 10      | 0  | 1  | 0       | 1        | 5       |
| 1  | 0  | 1     | 1         | 11      | 1  | 1  | 0       | 1        | 13      |
| 1  | 1  | 0     | 0         | 12      | 0  | 0  | 1       | 1        | 3       |
| 1  | 1  | 0     | 1         | 13      | 1  | 0  | 1       | 1        | 11      |
| 1  | 1  | 1     | 0         | 14      | 0  | 1  | 1       | 1        | 7       |
| 1  | 1  | 1     | 1         | 15      | 1  | 1  | 1       | 1        | 15      |

#### 4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.



# FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

| Oscillator Mode                                            | Oscillator Source | POSCMD<1:0> | FNOSC<2:0> | See<br>Notes |
|------------------------------------------------------------|-------------------|-------------|------------|--------------|
| Fast RC Oscillator with Divide-by-N (FRCDIVN)              | Internal          | xx          | 111        | 1, 2         |
| Fast RC Oscillator with Divide-by-16 (FRCDIV16)            | Internal          | xx          | 110        | 1            |
| Low-Power RC Oscillator (LPRC)                             | Internal          | xx          | 101        | 1            |
| Primary Oscillator (HS) with PLL (HSPLL)                   | Primary           | 10          | 011        |              |
| Primary Oscillator (XT) with PLL (XTPLL)                   | Primary           | 01          | 011        |              |
| Primary Oscillator (EC) with PLL (ECPLL)                   | Primary           | 0.0         | 011        | 1            |
| Primary Oscillator (HS)                                    | Primary           | 10          | 010        |              |
| Primary Oscillator (XT)                                    | Primary           | 01          | 010        |              |
| Primary Oscillator (EC)                                    | Primary           | 00          | 010        | 1            |
| Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) | Internal          | xx          | 001        | 1            |
| Fast RC Oscillator (FRC)                                   | Internal          | xx          | 000        | 1            |

#### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

#### 9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the product page using the link above, enter this URL in your brouger. |
|-------|----------------------------------------------------------------------------------------------------------------|
|       | this URL in your browser:<br>http://www.microchip.com/wwwproducts/<br>Devices.aspx?dDocName=en555464           |

#### 9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

#### REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
  - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
  - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

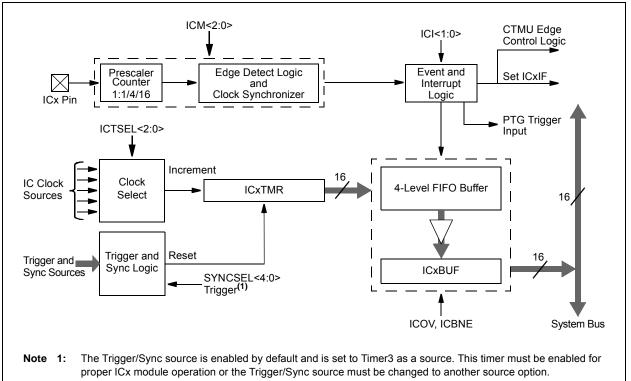
| R/W-0                        | R/W-0                                                                                                                                                                  | R/W-0                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | IC2R<6:0>                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| ·                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 8                                                                                                                                                                                                                                                                                                                                                                                               |
| R/W-0                        | R/W-0                                                                                                                                                                  | R/W-0                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                               |
|                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | IC1R<6:0>                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit C                                                                                                                                                                                                                                                                                                                                                                                               |
|                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| e bit                        | W = Writable b                                                                                                                                                         | it                                                                                                                                                                                                                                                                                                                                       | U = Unimplem                                                                                                                                                                                             | nented bit, rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |
| POR                          | '1' = Bit is set                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | '0' = Bit is clea                                                                                                                                                                                        | ared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x = Bit is unkr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nown                                                                                                                                                                                                                                                                                                                                                                                                |
| •                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | nbers)                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unimplemer                   | nted: Read as '0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |
| (see Table 11<br>1111001 = I | I-2 for input pin's nput tied to RPI1                                                                                                                                  | election num<br>21                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                          | onding RPn Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | e bit<br>POR<br>Unimplemen<br>IC2R<6:0>: /<br>(see Table 11<br>1111001 = I<br>0000001 = I<br>0000000 = I<br>Unimplemen<br>IC1R<6:0>: /<br>(see Table 11<br>1111001 = I | e bit W = Writable b<br>POR '1' = Bit is set<br>Unimplemented: Read as '0<br>IC2R<6:0>: Assign Input Cap<br>(see Table 11-2 for input pin s<br>1111001 = Input tied to RPI1<br>0000001 = Input tied to CMP<br>0000000 = Input tied to Vss<br>Unimplemented: Read as '0<br>IC1R<6:0>: Assign Input Cap<br>(see Table 11-2 for input pin s | e bit W = Writable bit<br>POR '1' = Bit is set<br>Unimplemented: Read as '0'<br>IC2R<6:0>: Assign Input Capture 2 (IC2)<br>(see Table 11-2 for input pin selection num<br>1111001 = Input tied to RPI121 | R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>       IC1R<6:0>         e bit       W = Writable bit       U = Unimplem         POR       '1' = Bit is set       '0' = Bit is clear         Unimplemented:       Read as '0'         IC2R<6:0>:       Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         0000001 = Input tied to CMP1         0000000 = Input tied to Vss         Unimplemented:         Read as '0'         IC1R<6:0>:         Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . | R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>         e bit       W = Writable bit       U = Unimplemented bit, real         POR       '1' = Bit is set       '0' = Bit is cleared         Unimplemented:       Read as '0'         IC2R<6:0>:       Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121       .         .       .         0000001 = Input tied to CMP1         0000000 = Input tied to Vss         Unimplemented:         Read as '0'         IC1R<6:0>:         Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers)         1111001 = Input tied to RPI121         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . | R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         IC1R<6:0>    e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<> |

#### REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

#### REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

| U-0          | R/W-0            | R/W-0                                                    | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 |
|--------------|------------------|----------------------------------------------------------|-------|-------------------|-----------------|-----------------|-------|
|              |                  |                                                          |       | DTCMP3R<6:0       | )>              |                 |       |
| bit 15       |                  |                                                          |       |                   |                 |                 | bit 8 |
| U-0          | R/W-0            | R/W-0                                                    | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 |
| 0-0          | R/W-0            | R/W-0                                                    | -     | DTCMP2R<6:0       |                 | R/W-0           | R/W-U |
| bit 7        |                  |                                                          |       |                   | 17              |                 | bit 0 |
| bit i        |                  |                                                          |       |                   |                 |                 | bit 0 |
| Legend:      |                  |                                                          |       |                   |                 |                 |       |
| R = Readab   | ole bit          | W = Writable                                             | bit   | U = Unimplem      | nented bit, rea | ad as '0'       |       |
| -n = Value a | at POR           | '1' = Bit is set                                         |       | '0' = Bit is clea | ared            | x = Bit is unkr | nown  |
|              |                  |                                                          |       |                   |                 |                 |       |
|              |                  | nput tied to CMI                                         |       |                   |                 |                 |       |
| bit 7        | 1 = 0000000 = Ir | nput tied to CMI<br>nput tied to Vss<br>nted: Read as '( |       |                   |                 |                 |       |

# 14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter





# dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

| Legend:<br>R = Readable bi | t     | W = Writable bit |       | U = Unimpler | mented bit, read | l as '0' |       |
|----------------------------|-------|------------------|-------|--------------|------------------|----------|-------|
| bit 7                      |       |                  |       |              |                  |          | bit 0 |
|                            |       |                  | PTPE  | ER<7:0>      |                  |          |       |
| R/W-1                      | R/W-1 | R/W-1            | R/W-1 | R/W-1        | R/W-0            | R/W-0    | R/W-0 |
| bit 15                     |       |                  |       |              |                  |          | bit 8 |
|                            |       |                  | PTPE  | R<15:8>      |                  |          |       |
| R/W-1                      | R/W-1 | R/W-1            | R/W-1 | R/W-1        | R/W-1            | R/W-1    | R/W-1 |

'0' = Bit is cleared

x = Bit is unknown

## REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

#### REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

| R/W-0                              | R/W-0 | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 | R/W-0 |
|------------------------------------|-------|-------|-------------------|-----------------|-----------------|-------|-------|
|                                    |       |       | SEVTC             | MP<15:8>        |                 |       |       |
| bit 15                             |       |       |                   |                 |                 |       | bit 8 |
|                                    |       |       |                   |                 |                 |       |       |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 | R/W-0 |
|                                    |       |       | SEVT              | CMP<7:0>        |                 |       |       |
| bit 7                              |       |       |                   |                 |                 |       | bit 0 |
|                                    |       |       |                   |                 |                 |       |       |
| Legend:                            |       |       |                   |                 |                 |       |       |
| R = Readable bit W = Writable bit  |       | t     | U = Unimplem      | nented bit, rea | id as '0'       |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is clea | ared            | x = Bit is unkr | nown  |       |

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

NOTES:

| Base<br>Instr<br># | Assembly<br>Mnemonic |                             |                                                  | # of<br>Words                               | # of<br>Cycles <sup>(2)</sup> | Status Flags<br>Affected |                         |  |
|--------------------|----------------------|-----------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------|--------------------------|-------------------------|--|
| 25 DAW             |                      | DAW Wn Wn decimal adjust Wn |                                                  | Wn = decimal adjust Wn                      | 1                             | 1                        | С                       |  |
| 26                 | DEC                  | DEC                         | f                                                | f = f - 1                                   | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | DEC                         | f,WREG                                           | WREG = f – 1                                | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | DEC                         | Ws,Wd                                            | Wd = Ws - 1                                 | 1                             | 1                        | C,DC,N,OV,Z             |  |
| 27                 | DEC2                 | DEC2                        | f                                                | f = f - 2                                   | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | DEC2                        | f,WREG                                           | WREG = f – 2                                | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | DEC2                        | Ws,Wd                                            | Wd = Ws - 2                                 | 1                             | 1                        | C,DC,N,OV,Z             |  |
| 28                 | DISI                 | DISI                        | #lit14                                           | Disable Interrupts for k instruction cycles | 1                             | 1                        | None                    |  |
| 29                 | DIV                  | DIV.S                       | Wm,Wn                                            | Signed 16/16-bit Integer Divide             | 1                             | 18                       | N,Z,C,OV                |  |
|                    |                      | DIV.SD                      | Wm,Wn                                            | Signed 32/16-bit Integer Divide             | 1                             | 18                       | N,Z,C,OV                |  |
|                    |                      | DIV.U                       | Wm,Wn                                            | Unsigned 16/16-bit Integer Divide           | 1                             | 18                       | N,Z,C,OV                |  |
|                    |                      | DIV.UD                      | Wm,Wn                                            | Unsigned 32/16-bit Integer Divide           | 1                             | 18                       | N,Z,C,OV                |  |
| 30                 | DIVF                 | DIVF                        | Wm , Wn <sup>(1)</sup>                           | Signed 16/16-bit Fractional Divide          | 1                             | 18                       | N,Z,C,OV                |  |
| 31                 | DO                   | DO                          | #lit15,Expr <sup>(1)</sup>                       | Do code to PC + Expr, lit15 + 1 times       | 2                             | 2                        | None                    |  |
|                    |                      | DO                          | Wn, Expr(1)                                      | Do code to PC + Expr, (Wn) + 1 times        | 2                             | 2                        | None                    |  |
| 32                 | ED                   | ED                          | Wm*Wm,Acc,Wx,Wy,Wxd <sup>(1)</sup>               | Euclidean Distance (no accumulate)          | 1                             | 1                        | OA,OB,OAB,<br>SA,SB,SAB |  |
| 33                 | EDAC                 | EDAC                        | Wm*Wm,Acc,Wx,Wy,Wxd <sup>(1)</sup>               | Euclidean Distance                          | 1                             | 1                        | OA,OB,OAB,<br>SA,SB,SAB |  |
| 34                 | EXCH                 | EXCH                        | Wns,Wnd                                          | Swap Wns with Wnd                           | 1                             | 1                        | None                    |  |
| 35                 | FBCL                 | FBCL                        | Ws,Wnd                                           | Find Bit Change from Left (MSb) Side        | 1                             | 1                        | С                       |  |
| 36                 | FF1L                 | FF1L                        | Ws,Wnd                                           | Find First One from Left (MSb) Side         |                               | 1                        | С                       |  |
| 37                 | FF1R                 | FF1R                        | Ws,Wnd                                           | Find First One from Right (LSb) Side        | 1                             | 1                        | С                       |  |
| 38                 | GOTO                 | GOTO                        | Expr                                             | Go to address                               | 2                             | 4                        | None                    |  |
|                    |                      | GOTO                        | Wn                                               | Go to indirect                              | 1                             | 4                        | None                    |  |
|                    |                      | GOTO.L                      | Wn                                               | Go to indirect (long address)               | 1                             | 4                        | None                    |  |
| 39                 | INC                  | INC                         | f                                                | f = f + 1                                   | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | INC                         | f,WREG                                           | WREG = f + 1                                | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | INC                         | Ws,Wd                                            | Wd = Ws + 1                                 | 1                             | 1                        | C,DC,N,OV,Z             |  |
| 40                 | INC2                 | INC2                        | f                                                | f = f + 2                                   | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | INC2                        | f,WREG                                           | WREG = f + 2                                | 1                             | 1                        | C,DC,N,OV,Z             |  |
|                    |                      | INC2                        | Ws,Wd                                            | Wd = Ws + 2                                 | 1                             | 1                        | C,DC,N,OV,Z             |  |
| 41                 | IOR                  | IOR                         | f                                                | f = f .IOR. WREG                            | 1                             | 1                        | N,Z                     |  |
|                    |                      | IOR                         | f,WREG                                           | WREG = f .IOR. WREG                         | 1                             | 1                        | N,Z                     |  |
|                    |                      | IOR                         | #lit10,Wn                                        | Wd = lit10 .IOR. Wd                         | 1                             | 1                        | N,Z                     |  |
|                    |                      | IOR                         | Wb,Ws,Wd                                         | Wd = Wb .IOR. Ws                            | 1                             | 1                        | N,Z                     |  |
|                    |                      | IOR                         | Wb,#lit5,Wd                                      | Wd = Wb .IOR. lit5                          | 1                             | 1                        | N,Z                     |  |
| 42                 | LAC                  | LAC                         | Wso,#Slit4,Acc                                   | Load Accumulator                            | 1                             | 1                        | OA,OB,OAB,<br>SA,SB,SAB |  |
| 43                 | LNK                  | LNK                         | #lit14                                           | Link Frame Pointer                          | 1                             | 1                        | SFA                     |  |
| 44                 | LSR                  | LSR                         | f                                                | f = Logical Right Shift f                   | 1                             | 1                        | C,N,OV,Z                |  |
|                    |                      | LSR                         | f,WREG                                           | WREG = Logical Right Shift f                | 1                             | 1                        | C,N,OV,Z                |  |
|                    |                      | LSR                         | Ws,Wd                                            | Wd = Logical Right Shift Ws                 | 1                             | 1                        | C,N,OV,Z                |  |
|                    |                      | LSR                         | Wb,Wns,Wnd                                       | Wnd = Logical Right Shift Wb by Wns         | 1                             | 1                        | N,Z                     |  |
|                    |                      | LSR                         | Wb,#lit5,Wnd                                     | Wnd = Logical Right Shift Wb by lit5        | 1                             | 1                        | N,Z                     |  |
| 45                 | MAC                  | MAC                         | Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB <sup>(1)</sup> | Multiply and Accumulate                     | 1                             | 1                        | OA,OB,OAB,<br>SA,SB,SAB |  |
|                    |                      | MAC                         | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)                       | Square and Accumulate                       | 1                             | 1                        | OA,OB,OAB,<br>SA,SB,SAB |  |

#### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

#### **30.1 DC Characteristics**

|                               |                                 |                       | Maximum MIPS                                                          |  |  |  |
|-------------------------------|---------------------------------|-----------------------|-----------------------------------------------------------------------|--|--|--|
| Characteristic                | VDD Range<br>(in Volts)         | Temp Range<br>(in °C) | dsPIC33EPXXXGP50X,<br>dsPIC33EPXXXMC20X/50X and<br>PIC24EPXXXGP/MC20X |  |  |  |
|                               | — 3.0V to 3.6V <sup>(1)</sup> - |                       | 70                                                                    |  |  |  |
| — 3.0V to 3.6V <sup>(1)</sup> |                                 | -40°C to +125°C       | 60                                                                    |  |  |  |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

#### TABLE 30-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                      | Symbol | Min.        | Тур.        | Max. | Unit |
|---------------------------------------------------------------------------------------------|--------|-------------|-------------|------|------|
| Industrial Temperature Devices                                                              |        |             |             |      |      |
| Operating Junction Temperature Range                                                        | TJ     | -40         | —           | +125 | °C   |
| Operating Ambient Temperature Range                                                         | TA     | -40         | _           | +85  | °C   |
| Extended Temperature Devices                                                                |        |             |             |      |      |
| Operating Junction Temperature Range                                                        | TJ     | -40         | —           | +140 | °C   |
| Operating Ambient Temperature Range                                                         | TA     | -40         | —           | +125 | °C   |
| Power Dissipation:<br>Internal chip power dissipation:<br>$PINT = VDD x (IDD - \Sigma IOH)$ |        | PINT + PI/O |             | W    |      |
| I/O Pin Power Dissipation:<br>$I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$     |        |             |             |      |      |
| Maximum Allowed Power Dissipation                                                           | PDMAX  | (           | ΓJ — TA)/θJ | IA   | W    |

#### TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                                   | Symbol | Тур. | Max. | Unit | Notes |
|--------------------------------------------------|--------|------|------|------|-------|
| Package Thermal Resistance, 64-Pin QFN           | θJA    | 28.0 |      | °C/W | 1     |
| Package Thermal Resistance, 64-Pin TQFP 10x10 mm | θJA    | 48.3 | _    | °C/W | 1     |
| Package Thermal Resistance, 48-Pin UQFN 6x6 mm   | θJA    | 41   | —    | °C/W | 1     |
| Package Thermal Resistance, 44-Pin QFN           | θJA    | 29.0 | _    | °C/W | 1     |
| Package Thermal Resistance, 44-Pin TQFP 10x10 mm | θJA    | 49.8 | _    | °C/W | 1     |
| Package Thermal Resistance, 44-Pin VTLA 6x6 mm   | θJA    | 25.2 | _    | °C/W | 1     |
| Package Thermal Resistance, 36-Pin VTLA 5x5 mm   | θJA    | 28.5 |      | °C/W | 1     |
| Package Thermal Resistance, 28-Pin QFN-S         | θJA    | 30.0 | _    | °C/W | 1     |
| Package Thermal Resistance, 28-Pin SSOP          | θJA    | 71.0 | _    | °C/W | 1     |
| Package Thermal Resistance, 28-Pin SOIC          | θJA    | 69.7 | _    | °C/W | 1     |
| Package Thermal Resistance, 28-Pin SPDIP         | θJA    | 60.0 | —    | °C/W | 1     |

**Note 1:** Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

| AC CHARACTERISTICS |                              |                                                                | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |           |       |            |                                                                                                             |  |
|--------------------|------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------------|-------------------------------------------------------------------------------------------------------------|--|
| Param<br>No.       | Symbol Characteristic(') Min |                                                                | Тур. <sup>(2)</sup>                                                                                                                                                                                                                                                                 | Max.      | Units | Conditions |                                                                                                             |  |
| SY00               | Τρυ                          | Power-up Period                                                | _                                                                                                                                                                                                                                                                                   | 400       | 600   | μS         |                                                                                                             |  |
| SY10               | Tost                         | Oscillator Start-up Time                                       |                                                                                                                                                                                                                                                                                     | 1024 Tosc |       |            | Tosc = OSC1 period                                                                                          |  |
| SY12               | Twdt                         | Watchdog Timer<br>Time-out Period                              | 0.81                                                                                                                                                                                                                                                                                | 0.98      | 1.22  | ms         | WDTPRE = 0,<br>WDTPOST<3:0> = 0000, using<br>LPRC tolerances indicated in F21<br>(see Table 30-20) at +85°C |  |
|                    |                              |                                                                | 3.26                                                                                                                                                                                                                                                                                | 3.91      | 4.88  | ms         | WDTPRE = 1,<br>WDTPOST<3:0> = 0000, using<br>LPRC tolerances indicated in F21<br>(see Table 30-20) at +85°C |  |
| SY13               | Tioz                         | I/O High-Impedance<br>from MCLR Low or<br>Watchdog Timer Reset | 0.68                                                                                                                                                                                                                                                                                | 0.72      | 1.2   | μS         |                                                                                                             |  |
| SY20               | TMCLR                        | MCLR Pulse Width (low)                                         | 2                                                                                                                                                                                                                                                                                   | _         | _     | μS         |                                                                                                             |  |
| SY30               | TBOR                         | BOR Pulse Width (low)                                          | 1                                                                                                                                                                                                                                                                                   | _         |       | μS         |                                                                                                             |  |
| SY35               | TFSCM                        | Fail-Safe Clock Monitor<br>Delay                               | _                                                                                                                                                                                                                                                                                   | 500       | 900   | μS         | -40°C to +85°C                                                                                              |  |
| SY36               | TVREG                        | Voltage Regulator<br>Standby-to-Active mode<br>Transition Time | _                                                                                                                                                                                                                                                                                   | —         | 30    | μS         |                                                                                                             |  |
| SY37               | Toscdfrc                     | FRC Oscillator Start-up<br>Delay                               | 46                                                                                                                                                                                                                                                                                  | 48        | 54    | μS         |                                                                                                             |  |
| SY38               | Toscdlprc                    | LPRC Oscillator Start-up<br>Delay                              |                                                                                                                                                                                                                                                                                     | —         | 70    | μS         |                                                                                                             |  |

# TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

# **Revision F (November 2012)**

Removed "Preliminary" from data sheet footer.

#### **Revision G (March 2013)**

This revision includes the following global changes:

- changes "FLTx" pin function to "FLTx" on all occurrences
- adds Section 31.0 "High-Temperature Electrical Characteristics" for high-temperature (+150°C) data

This revision also includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-5.

| Section Name                                                         | Update Description                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Cover Section                                                        | <ul> <li>Changes internal oscillator specification to 1.0%</li> <li>Changes I/O sink/source values to 12 mA or 6 mA</li> <li>Corrects 44-pin VTLA pin diagram (pin 32 now shows as 5V tolerant)</li> </ul>                                                                                                                                                                           |  |  |  |  |
| Section 4.0 "Memory<br>Organization"                                 | Deletes references to Configuration Shadow registers<br>Corrects the spelling of the JTAGIP and PTGWDTIP bits throughout<br>Corrects the Reset value of all IOCON registers as C000h<br>Adds footnote to Table 4-42 to indicate the absence of Comparator 3 in 28-pin<br>devices                                                                                                     |  |  |  |  |
| Section 6.0 "Resets"                                                 | <ul> <li>Removes references to cold and warm Resets, and clarifies the initial configuration of<br/>the device clock source on all Resets</li> </ul>                                                                                                                                                                                                                                 |  |  |  |  |
| Section 7.0 "Interrupt<br>Controller"                                | Corrects the definition of GIE as "Global Interrupt Enable" (not "General")                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Section 9.0 "Oscillator<br>Configuration"                            | <ul> <li>Clarifies the behavior of the CF bit when cleared in software</li> <li>Removes POR behavior footnotes from all control registers</li> <li>Corrects the tuning range of the TUN&lt;5:0&gt; bits in Register 9-4 to an overall range ±1.5%</li> </ul>                                                                                                                         |  |  |  |  |
| Section 13.0 "Timer2/3 and Timer4/5"                                 | <ul> <li>Clarifies the presence of the ADC Trigger in 16-bit Timer3 and Timer5, as well as the<br/>32-bit timers</li> </ul>                                                                                                                                                                                                                                                          |  |  |  |  |
| Section 15.0 "Output<br>Compare"                                     | <ul> <li>Corrects the first trigger source for SYNCSEL&lt;4:0&gt; (OCxCON2&lt;4:0&gt;) as OCxRS<br/>match</li> </ul>                                                                                                                                                                                                                                                                 |  |  |  |  |
| Section 16.0 "High-Speed<br>PWM Module"                              | <ul> <li>Clarifies the source of the PWM interrupts in Figure 16-1</li> <li>Corrects the Reset states of IOCONx&lt;15:14&gt; in Register 16-13 as '11'</li> </ul>                                                                                                                                                                                                                    |  |  |  |  |
| Section 17.0 "Quadrature<br>Encoder Interface (QEI)<br>Module"       | <ul> <li>Clarifies the operation of the IMV&lt;1:0&gt; bits (QEICON&lt;9:8&gt;) with updated text and additional notes</li> <li>Corrects the first prescaler value for QFVDIV&lt;2:0&gt; (QEI10C&lt;13:11&gt;), now 1:128</li> </ul>                                                                                                                                                 |  |  |  |  |
| Section 23.0 "10-Bit/12-Bit<br>Analog-to-Digital Converter<br>(ADC)" | <ul> <li>Adds note to Figure 23-1 that Op Amp 3 is not available in 28-pin devices</li> <li>Changes "sample clock" to "sample trigger" in AD1CON1 (Register 23-1)</li> <li>Clarifies footnotes on op amp usage in Registers 23-5 and 23-6</li> </ul>                                                                                                                                 |  |  |  |  |
| Section 25.0 "Op Amp/<br>Comparator Module"                          | <ul> <li>Adds Note text to indicate that Comparator 3 is unavailable in 28-pin devices</li> <li>Splits Figure 25-1 into two figures for clearer presentation (Figure 25-1 for Op amp/<br/>Comparators 1 through 3, Figure 25-2 for Comparator 4). Subsequent figures are<br/>renumbered accordingly.</li> <li>Corrects reference description in xxxxx (now (AVDD+AVSS)/2)</li> </ul> |  |  |  |  |
| Section 27.0 "Special Features"                                      | <ul> <li>Changes CMSTAT&lt;15&gt; in Register 25-1 to "PSIDL"</li> <li>Corrects the addresses of all Configuration bytes for 512 Kbyte devices</li> </ul>                                                                                                                                                                                                                            |  |  |  |  |

#### TABLE A-5: MAJOR SECTION UPDATES

#### TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

# **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support