

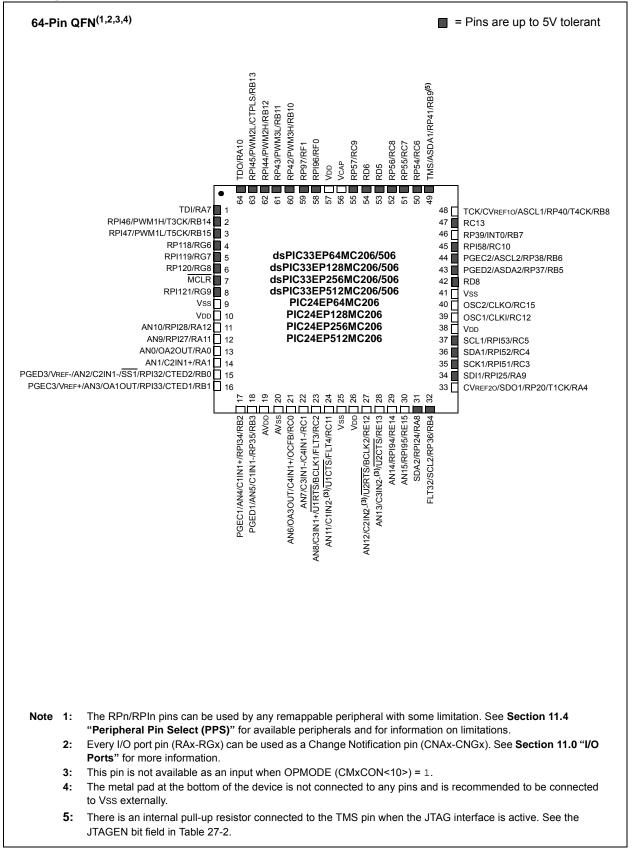
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

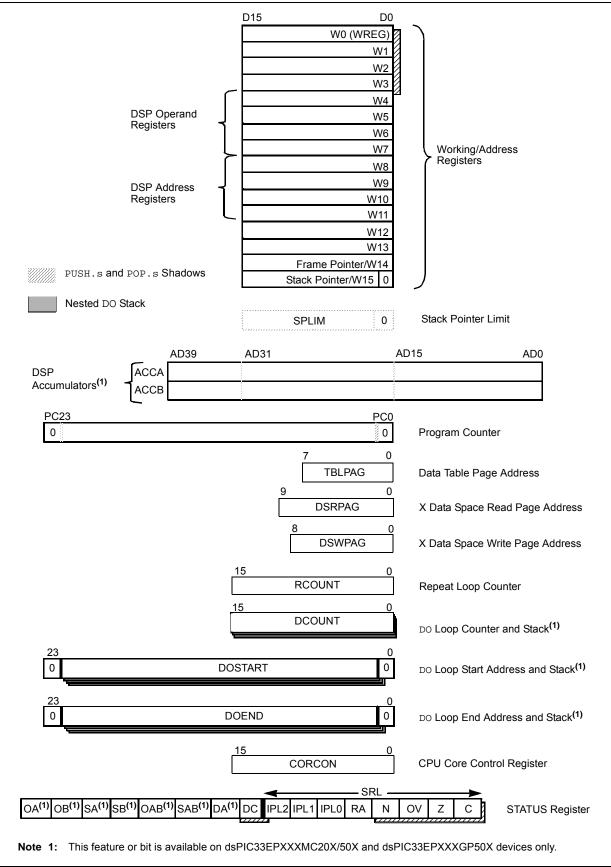
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


 \times FI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc202t-e-mm


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_		_	_	_		_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	-	_	CTMUIF	_	_		—	_	_		_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		—	_	_		_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_		—	_	_		_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_		—	_	_		_	_	_	_	_	_	0000
IFS9	0812	_	_	_	-	_	_	_	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	—	-	_		—	—	_	IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	-	_	QEI1IE	PSEMIE	—	_	_	—	—	-	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	-	_		—	—	_	_	—	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—	-	_	_	_	_	_	_	—	_		_	—		0000
IEC6	082C	_	_	_	-	_	_	_	_	_	_	—	_	-	_	—	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	-	_	_	_	_	_	_	—	_	-	_	—	—	0000
IEC9	0832	_	_	_	-	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>				INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_	OC2IP<2:0>			_	IC2IP<2:0>		-	- DMA0IP<2:0>			4444	
IPC2	0844	_	-	U1RXIP<2:0	>	_	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	-		T3IP<2:0>		4444
IPC3	0846	_	_	—	—	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		-		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	—	—	_		—	—	_	_	—	—	-		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0)>			OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>			INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_	_	—	—	_		—	—	_		SPI2IP<2:0>	•	-	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_	_	-	_		IC4IP<2:0	>	_		IC3IP<2:0>		-	[DMA3IP<2:0>		0444
IPC12	0858	_	_	_		_	N	112C2IP<2:	0>	_		SI2C2IP<2:0>		-	_	—		0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_		PSEMIP<2:0> —		_	_	_	0440	
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866	_	_	—	—	_	—	—	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC23	086E	_	F	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	_	_	—	_	_	_	_	4400
IPC24	0870	_	_			_		_			_	_	_	_	F	PWM3IP<2:0>		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-16:	QEI1	REGR		P FOR d	SPIC33E	PXXXMO	20X/50)	(AND PI	C24EP)		20X DE	VICES O	NLY	1			r
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV	<1:0>	-		INTDIV<2:0	>	CNTPOL GATEN CCM<1:0>				0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8							ł	POSCNT<31:	16>								0000
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE		INTTMR<15:0> 000								0000							
INT1TMRH	01D0		INTTMR<31:16> 0000								0000							
INT1HLDL	01D2								INTHLD<15:)>								0000
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE		QEIGEC<31:16> 000								0000							
QEI1ICH	01DE		QEIIC<31:16> 000								0000							
QEI1LECL	01E0								QEILEC<15:)>								0000
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_		INT1R<6:0>						_	_	_	_		_	_	0000	
RPINR1	06A2		—						-	INT2R<6:0>						0000		
RPINR3	06A6		_	_	_	_	_	_	_	_			-	[2CKR<6:0>	>			0000
RPINR7	06AE	_		IC2R<6:0>						—	IC1R<6:0>						0000	
RPINR8	06B0	_		IC4R<6:0>						—				IC3R<6:0>				0000
RPINR11	06B6	_	_	OCFAR<6:0>							0000							
RPINR12	06B8	_			l	=LT2R<6:0>				—	FLT1R<6:0>						0000	
RPINR14	06BC	_			(QEB1R<6:0	>			—	QEA1R<6:0>						0000	
RPINR15	06BE	_			Н	OME1R<6:0)>			—	INDX1R<6:0>						0000	
RPINR18	06C4	_	_	_	—	_	_	_	_	—	U1RXR<6:0>						0000	
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	_		_	_	_	_	_	_				SS2R<6:0>				0000
RPINR37	06EA	_	SYNCI1R<6:0>					_	_	_	_	_	_	_	_	0000		
RPINR38	06EC	_		DTCMP1R<6:0>						_	_	_	_		_	_	_	0000
RPINR39	06EE	_			DT	CMP3R<6:	0>			—	DTCMP2R<6:0>						0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

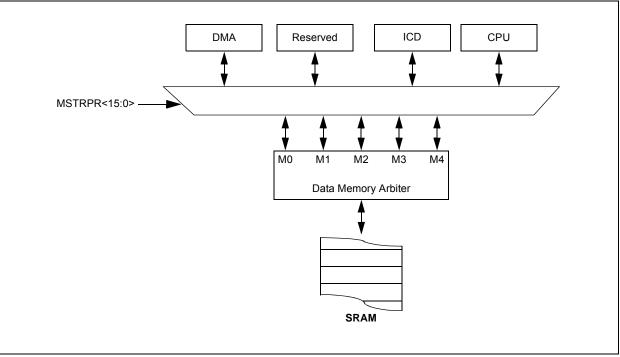
4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE


that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Drierity	MSTRPR<15:0> Bit Setting ⁽¹⁾						
Priority	0x0000	0x0020					
M0 (highest)	CPU	DMA					
M1	Reserved	CPU					
M2	Reserved	Reserved					
M3	DMA	Reserved					
M4 (lowest)	ICD	ICD					

Note 1: All other values of MSTRPR<15:0> are reserved.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "**CPU**" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

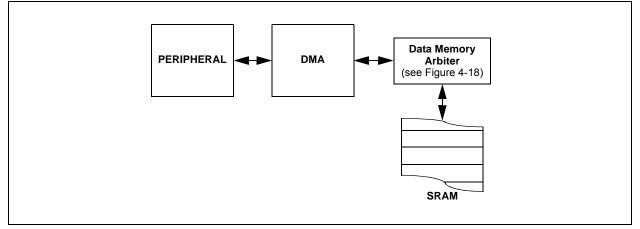
- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER MODULE

REGISTER	TU-5: PIVID6	. PERIPHER		DISABLE C	UNIROL RE	GISIER 6		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	_	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-11	Unimplement	ted: Read as '	כ'					
bit 10	PWM3MD: P\	NM3 Module D	isable bit ⁽¹⁾					
	1 = PWM3 mo	odule is disable	ed					
	0 = PWM3 mo	odule is enable	d					
bit 9	PWM2MD: P\	NM2 Module D	isable bit ⁽¹⁾					
1 = PWM2 module is disabled			ed					
	0 = PWM2 module is enabled							
bit 8	PWM1MD: PWM1 Module Disable bit ⁽¹⁾							
1 = PWM1 module is disabled								
	0 = PWM1 mo	odule is enable	d					
bit 7-0	Unimplement	ted: Read as '	כ'					

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

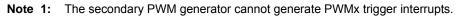
15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
0-0	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	0-0	ENFLTB		
 bit 15		OCSIDE	OCTSEL2	OCISELI	OCTSELU	—	bit 8		
DIL 15							DIL O		
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7		001218	OOFEIN	ITTOMODE	001112	0.0111	bit 0		
							2.1.0		
Legend:		HSC = Hardw	are Settable/Cl	earable bit					
R = Read	able bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-14	Unimplemen	ted: Read as 'o)'						
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit					
		compare x Halts							
	•	compare x conti	•		ode				
bit 12-10		D>: Output Com	pare x Clock Se	elect bits					
	111 = Periph 110 = Reserv	eral clock (FP)							
	101 = PTGO								
		is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)			
		is the clock so							
		is the clock so							
		(is the clock so (is the clock so							
bit 9		ted: Read as '0		-					
bit 8	-	ult B Input Enab							
		ompare Fault B		is enabled					
	-	compare Fault B		is disabled					
bit 7		ult A Input Enab							
		Compare Fault A Compare Fault A							
bit 6	•	•	,	is disabled					
bit 5	-	i ted: Read as '0 VM Fault B Cond							
DIL 5		ult B condition of							
		I Fault B condition							
bit 4	OCFLTA: PWM Fault A Condition Status bit								
	1 = PWM Fault A condition on OCFA pin has occurred								
	0 = No PWM Fault A condition on OCFA pin has occurred								
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	/I mode only.					
2:	Each Output Cor			-	urce. See Secti	on 24.0 "Perip	heral Trigger		
	Generator (PTG								
	PTGO4 = OC1								
	PTG05 = 0C2								
	PTGO6 = OC3 PTGO7 = OC4								

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.


Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	TRGD	IV<3:0>		—		—					
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—			TRGSTF	RT<5:0> (1)						
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-12	TRGDIV<3:	0>: Trigger # Ou	itput Divider b	pits							
	1111 = Trigger output for every 16th trigger event										
	1110 = Trigger output for every 15th trigger event										
	1101 = Trigger output for every 14th trigger event										
	1100 = Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event										
		ger output for ev ger output for ev									
		ger output for ev									
		ger output for ev									
		ger output for ev									
		ger output for ev									
		ger output for ev									
		ger output for ev									
		ger output for ev									
	0001 = Trigg	ger output for ev	ery 2nd trigge	er event							
	0000 = Trig g	ger output for ev	ery trigger ev	vent							
bit 11-6	Unimpleme	nted: Read as '	0'								
bit 5-0	TRGSTRT<	5:0>: Trigger Po	stscaler Start	t Enable Select	bits ⁽¹⁾						
	111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled										
	•										
	•										
	•										
	()()()()()()() = V	aits 2 PWM cvc	les before de	nerating the firs	t trigger event :	after the module	is enabled				
		/aits 2 PWM cyc /aits 1 PWM cyc									

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15		•					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	-	-		-	-	-	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		xH Output Pin	Ownershin hit				
bit 10		odule controls	•				
		dule controls P					
bit 14	PENL: PWM	L Output Pin	Ownership bit				
		odule controls					
	0 = GPIO mo	dule controls P	WMxL pin				
bit 13		xH Output Pin	-				
		oin is active-lov oin is active-hig					
bit 12	POLL: PWM	kL Output Pin F	Polarity bit				
		in is active-low in is active-hig					
bit 11-10	PMOD<1:0>:	PWMx # I/O F	in Mode bits ⁽¹)			
	01 = PWMx I	d; do not use /O pin pair is in /O pin pair is in /O pin pair is in	the Redunda	nt Output mod	е		
bit 9		verride Enable	•				
	1 = OVRDAT	<1> controls ou enerator contro	utput on PWM	xH pin			
bit 8	OVRENL: Ov	erride Enable	for PWMxL Pir	n bit			
	1 = OVRDAT	<0> controls ou	utput on PWM	xL pin			
	0 = PWMx ge	nerator contro	ls PWMxL pin				
bit 7-6	OVRDAT<1:0	D>: Data for PV	VMxH, PWMxI	Pins if Overri	ide is Enabled b	oits	
					d by OVRDAT< by OVRDAT<0		
bit 5-4	FLTDAT<1:0	>: Data for PW	MxH and PWN	MxL Pins if FL	rMOD is Enable	ed bits	
					by FLTDAT<1> by FLTDAT<0>.		
bit 3-2	CLDAT<1:0>	: Data for PWN	/IxH and PWM	IxL Pins if CLM	10D is Enabled	bits	
				•	ecified by CLDA		
	ese bits should	-			enabled (PTEN le IOCONx regi	-	written afte

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC<31:24>			
						bit 8
	DAM 0			DAMA	DAVO	
R/W-U	R/W-U			R/W-U	R/W-U	R/W-0
		QEIGE	EC<23:16>			
						bit (
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'			
२	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	R/W-0	W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIGE	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIG	EC<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn			nown		

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

Legend:C = Writable bit, but onR = Readable bitW = Writable bit				 '0' can be written to clear the bit U = Unimplemented bit, read as '0' 				
								
bit 7							bit 0	
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	
bit 15							bit 8	
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state
	0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state
h:+ 0	•
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit o	1 = Transmitter or receiver is in Error Warning state
	0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
h it 0	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

-n = Value at POR

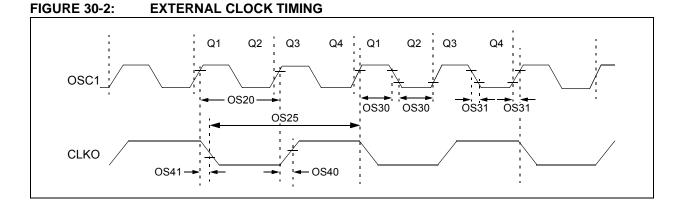
22.2 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN IDISSEN		CTTRIG		
bit 15						bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_		—	_		<u> </u>		_		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled									
bit 14	Unimpleme	nted: Read as '0	3						
bit 13	bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode								
bit 12	bit 12 TGEN: Time Generation Enable bit								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

	 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion
	0 = CTMU does not trigger ADC start of conversion
bit 7-0	Unimplemented: Read as '0'

1 = Enables edge delay generation0 = Disables edge delay generation


EDGEN: Edge Enable bit

bit 11

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
							-
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	DC bit			
		es Trigger wher			executed		
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed	
bit 14		mple Trigger P					
		es Trigger wher				al	
bit 13					mand is execute	a	
DIL 13		mple Trigger P es Trigger wher			evecuted		
					mand is execute	ed	
bit 12		mple Trigger P					
	1 = Generate	es Trigger wher	the broadcas	t command is	executed		
					mand is execute	ed	
bit 11	-	ger/Synchroniz					
					ast command is broadcast con		ited
bit 10	-	ger/Synchroniz					
					ast command is broadcast con		ited
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source f	for IC2 bit			
					ast command is broadcast con		ited
bit 8	IC1TSS: Trig	ger/Synchroniz	ation Source f	for IC1 bit			
					ast command is broadcast con		ited
bit 7		ck Source for C	-				
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted	
bit 6		ck Source for C	-				
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted	
bit 5		ck Source for C	-				
		es clock pulse v		dcast comman	d is executed		
					command is exe	cuted	
	This register is rea PTGSTRT = 1).	ad-only when th	e PTG modul	e is executing	Step command	s (PTGEN = 1 ;	and
	This register is on	ly used with the	PTGCTRL OI	PTION = 1111	Step command	l.	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C	
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C	
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	_	ns		
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2		ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C	
			—	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.