

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc204-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

		<u>~</u>				Re	mappa	ble P	eriphe	erals											
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbyte	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	СТМИ	PTG	l/O Pins	Pins	Packages
PIC24EP32MC202	512	32	4																		
PIC24EP64MC202	1024	64	8																		SPDIP,
PIC24EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC,
PIC24EP256MC202	1024	256	32																		QFN-S
PIC24EP512MC202	1024	512	48																		
PIC24EP32MC203	512	32	4	-			_	4	0	0		0	0	4	•	2/4	V	Vee	05	20	
PIC24EP64MC203	1024	64	8	5	4	4	ю	1	2	2	_	3	2	1	8	3/4	res	res	25	30	VILA
PIC24EP32MC204	512	32	4																		
PIC24EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
PIC24EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,
PIC24EP256MC204	1024	256	32																	40	UQFN
PIC24EP512MC204	1024	512	48																		
PIC24EP64MC206	1024	64	8																		
PIC24EP128MC206	1024	128	16	_					-			•									TQFP.
PIC24EP256MC206	1024	256	32	5	4	4	6	1	2	2	_	3	2	1	16	3/4	res	res	53	64	QFN
PIC24EP512MC206	1024	512	48																		
dsPIC33EP32MC202	512	32	4																		
dsPIC33EP64MC202	1024	64	8																		SPDIP,
dsPIC33EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,
dsPIC33EP256MC202	1024	256	32																		QFN-S
dsPIC33EP512MC202	1024	512	48																		
dsPIC33EP32MC203	512	32	4	_		_			-	_		-	-		-						
dsPIC33EP64MC203	1024	64	8	5	4	4	6	1	2	2	—	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP32MC204	512	32	4																		
dsPIC33EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
dsPIC33EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,
dsPIC33EP256MC204	1024	256	32																	40	UQFN,
dsPIC33EP512MC204	1024	512	48																		
dsPIC33EP64MC206	1024	64	8																		
dsPIC33EP128MC206	1024	128	16	_					-			-	-								TOFP
dsPIC33EP256MC206	1024	256	32	5	4	4	6	1	2	2	—	3	2	1	16	3/4	Yes	Yes	53	64	QFN
dsPIC33EP512MC206	1024	512	48																		
dsPIC33EP32MC502	512	32	4																		
dsPIC33EP64MC502	1024	64	8																		SPDIP,
dsPIC33EP128MC502	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,
dsPIC33EP256MC502	1024	256	32								1	3	2						21		QFN-S
dsPIC33EP512MC502	1024	512	48																	_	
dsPIC33EP32MC503	512	32	4	_		l .	6		_	6			-		_	.		~	a-		
dsPIC33EP64MC503	1024	64	8	5	4	4	6	1	2	2	1	3	2	1	8	3/4	res	res	25	36	VILA

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
		<u> </u>		RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-4	Unimplemen	ted: Read as '	י)				
bit 3	RQCOL3: DM	IA Channel 3 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 2	RQCOL2: DM	IA Channel 2 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 1	RQCOL1: DM	1A Channel 1 T	ransfer Reque	est Collision Fl	lag bit		
	1 = User forc 0 = No reque	e and interrupt st collision is d	-based reques etected	st collision is d	etected		
bit 0	RQCOL0: DM	1A Channel 0 T	ransfer Requ	est Collision Fl	lag bit		
	1 = User forc	e and interrupt	-based reques	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = No Sync or Trigger source for ICx
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = CTMU module synchronizes or triggers ICx
 - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$
 - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
 - $11001 = CMP2 \text{ module synchronizes or triggers ICx}^{(5)}$
 - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 module synchronizes or triggers ICx
 - 10010 = IC3 module synchronizes or triggers ICx
 - 10001 = IC2 module synchronizes or triggers ICx
 - 10000 = IC1 module synchronizes or triggers ICx
 - 01111 = Timer5 synchronizes or triggers ICx
 - 01110 = Timer4 synchronizes or triggers ICx
 - 01101 = Timer3 synchronizes or triggers ICx (default)
 - 01100 = Timer2 synchronizes or triggers ICx
 - 01011 = Timer1 synchronizes or triggers ICx
 - 01010 = PTGOx module synchronizes or triggers $ICx^{(6)}$
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = OC4 module synchronizes or triggers ICx
 - 00011 = OC3 module synchronizes or triggers ICx
 - 00010 = OC2 module synchronizes or triggers ICx
 - 00001 = OC1 module synchronizes or triggers ICx
 - 00000 = No Sync or Trigger source for ICx
- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1

PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un			nown
R = Readable	t = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	d as '0'	
Legend:							
bit 7	it 7						bit 0
			POSCN	IT<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			POSCN	IT<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	NT<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7	7					bit 0	
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'		d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno		nown	
1							

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

QEIIC<15:8> bit 15 bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> bit 7 bit 7 bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 b R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> b b Legend: W = Writable bit U = Unimplemented bit read as '0'				QEII	C<15:8>			
R/W-0 R/W-0 <th< td=""><td>bit 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 8</td></th<>	bit 15							bit 8
R/W-0 R/W-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
QEIIC<7:0> bit 7 Legend: R = Readable bit W = Writable bit	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 b Legend: W = Writable bit B = Readable bit W = Writable bit				QEII	C<7:0>			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit read as '0'	bit 7	bit 7						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit read as '0'								
R = Readable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$	Legend:							
	R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30		—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				—			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	CSS31: ADC	1 Input Scan Se	election bit				
	1 = Selects C	TMU capacitive	and time me	asurement for	input scan (Ope	en)	
	0 = Skips CTI	MU capacitive a	ind time meas	surement for in	put scan (Open)	
bit 14	CSS30: ADC	1 Input Scan Se	election bit				
	1 = Selects C 0 = Skips CTI	TMU on-chip te MU on-chip tem	mperature mea	easurement fo surement for i	r input scan (CT nput scan (CTM	MU TEMP) IU TEMP)	
bit 13-11	Unimplemen	ted: Read as '0)'				
bit 10	CSS26: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A3/AN6 for inpu	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A2/AN0 for inpu	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O 0 = Skips OA	A1/AN3 for input 1/AN3 for input	ut scan scan				
bit 7-0	Unimplemen	ted: Read as 'o)'				
Note 1: A	II AD1CSSH bits prresponding inpu	can be selected ut on the device	d by user softw , convert VRE	vare. However _{FL.}	r, inputs selecte	d for scan, with	out a

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a То comprehensive reference source. complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 27-1.

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage	3.0	_	3.6	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	—	V/ms	0V-1V in 100 ms	

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must have a low series resistance (< 1 Ohm)

Note 1: Typical VCAP voltage = 1.8 volts when VDD \geq VDDMIN.

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	—	_	15	MHz	(Note 3)
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

33.1 Package Marking Information (Continued)

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.