

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc204-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	25
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	45
5.0	Flash Program Memory	119
6.0	Resets	123
7.0	Interrupt Controller	127
8.0	Direct Memory Access (DMA)	139
9.0	Oscillator Configuration	153
10.0	Power-Saving Features	163
11.0	I/O Ports	173
12.0	Timer1	203
13.0	Timer2/3 and Timer4/5	207
14.0	Input Capture	213
15.0	Output Compare	219
16.0	High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	225
17.0	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	249
18.0	Serial Peripheral Interface (SPI)	265
19.0	Inter-Integrated Circuit™ (I ² C™)	273
20.0	Universal Asynchronous Receiver Transmitter (UART)	281
21.0	Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)	287
22.0	Charge Time Measurement Unit (CTMU)	315
23.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	321
24.0	Peripheral Trigger Generator (PTG) Module	337
25.0	Op Amp/Comparator Module	355
26.0	Programmable Cyclic Redundancy Check (CRC) Generator	373
27.0	Special Features	379
28.0	Instruction Set Summary	387
29.0	Development Support	397
30.0	Electrical Characteristics	401
31.0	High-Temperature Electrical Characteristics	467
32.0	DC and AC Device Characteristics Graphs	475
33.0	Packaging Information	479
Appe	ndix A: Revision History	507
Index		517
The I		525
Custo	omer Change Notification Service	525
Custo	omer Support	525
Produ	uct identification System	527

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned or mixed-sign DSP multiply (US)
- · Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	SOMMAN	
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addre	SS	Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	_	_	—	—	—
bit 15		·			·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0
bit 7		•			·		bit 0
Legend:		S = Settable b	oit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15	FORCE: Forc	e DMA Transfe	er bit ⁽¹⁾				
	1 = Forces a	single DMA tra	insfer (Manua	l mode)			
	0 = Automati	c DMA transfer	initiation by D	MA request			
bit 14-8	Unimplemen	ted: Read as '	י)				
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Numl	ber Select bits			
	01000110 =	ECAN1 – TX D	ata Request ⁽²	2)			
	00100110 =	IC4 – Input Caj	oture 4				
	00100101 =	IC3 – Input Ca	oture 3				
	00100010 =	ECAN1 – RX D	Data Ready(2)				
	00100001 = 3	SPIZ Transfer I	Jone NDT2 Transmi	ittor			
	00011111 =	UART2RX - U	ART2 Receive	ar			
	0001110 = 00011100 = 000011100 = 000011000 = 00000000	TMR5 – Timer	5				
	00011011 =	TMR4 – Timer4	1				
	00011010 =	OC4 – Output	Compare 4				
	00011001 =	OC3 – Output (Compare 3				
	00001101 =	ADC1 – ADC1	Convert done	•			
	00001100 =	UART1TX – U/	ART1 Transm	itter			
	00001011 =	UART1RX – U	ART1 Receive	er			
	00001010 =	SPI1 – Transfe	r Done				
	00001000 =	TMR3 – Timera	3				
	00000111 =	100RZ - 100RZ	<u>Compore 2</u>				
	00000110 = 0	IC2 – Duipui (oture 2				
	00000101 = 0	OC1 = Outout 0	Compare 1				
	00000001 =	IC1 – Input Ca	oture 1				
	00000000 =	INT0 – Externa	I Interrupt 0				

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	_	—	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—		_		_				
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown		
bit 15-11	Unimplemen	ted: Read as '	0'						
bit 10	PWM3MD: P	WM3 Module D)isable bit ⁽¹⁾						
	1 = PWM3 mo	odule is disable	ed						
	0 = PWM3 mo	odule is enable	d						
bit 9	PWM2MD: P	WM2 Module D	isable bit ⁽¹⁾						
	1 = PWM2 mo	odule is disable	ed						
	0 = PWM2 mc	odule is enable	d						
bit 8	PWM1MD: P	WM1 Module D	isable bit ⁽¹⁾						
	1 = PWM1 mo	odule is disable	ed						
	0 = PWM1 mo	odule is enable	d						
bit 7-0	Unimplemen	ted: Read as '	0'						

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

NOTES:

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10
bit 15					•		bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
Legend: C = Clearable bit		HS = Hardwa	re Settable bit	HSC = Hardware Settable/Clearable bit			
R = Readabl	e bit	W = Writable	e bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown	

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
	1 = NACK received from slave 0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation0 = No bus collision detected
	Hardware is set at detection of a bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
1.11.0	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
DIT 8	ADD10: 10-Bit Address Status bit
	I = 10-bit address was matched 0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	1 = An attempt to write to the I2CxTRN register failed because the I^2 C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	 Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.

NOTES:

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn
bit 15	ADON: ADO	C1 Operating N	lode bit				
	1 = ADC mo	odule is operati	ng				
	0 = ADC is	off					
bit 14	Unimpleme	ented: Read as	'0'				
bit 13	ADSIDL: AI	DC1 Stop in Idle	e Mode bit				
	1 = Disconti	inues module o	peration when	device enters	Idle mode		
	0 = Continu	es module ope	ration in Idle mo	ode			
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit				
	1 = DMA b	uffers are writte	en in the order	of conversion	; the module p	provides an addre	ess to the DMA
	0 = DMA bi	uffers are writte	en in Scatter/Ga	ther mode: the	e module prov	ides a Scatter/Ga	ther address to
	the DM	A channel, bas	ed on the index	of the analog	input and the	size of the DMA	ouffer.
bit 11	Unimpleme	ented: Read as	'0'				
bit 10	AD12B: AD	C1 10-Bit or 12	2-Bit Operation	Mode bit			
	1 = 12-bit, 1	-channel ADC	operation				
	0 = 10-bit, 4	-channel ADC	operation				
bit 9-8	FORM<1:0	>: Data Output	Format bits				
	For 10-Bit C	Operation:					
	11 = Signed	d fractional (Do	UT = sddd ddd	ld dd00 000	0, where $s = $.	NOT.d<9>)	
	10 = Fractions	hai (DOUT = ac	100 0000 000 = cccc cccd		where $c = N($	(<0>b T(
	00 = Intege	r (Dout = 0000	00dd dddd	dddd)		51.u (0 ²)	
	For 12-Bit C	Deration:		,			
	11 = Signed	fractional (Do	UT = sddd ddd	ld dddd 000	0, where $s = .$	NOT.d<11>)	
	10 = Fractic	onal (Dout = do	ldd dddd ddd	ld 0000)			
	00 = Intege	r (DOUT = 0000	- ssss sada) dddd dddd	aaaa aaad, dddd)	where $s = .NC$	JI.U<112)	
		. (2001 - 0000		adduj			
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30		—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				—			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	CSS31: ADC	1 Input Scan Se	election bit				
	1 = Selects C	TMU capacitive	and time me	asurement for	input scan (Ope	en)	
	0 = Skips CTI	MU capacitive a	ind time meas	surement for in	put scan (Open)	
bit 14	CSS30: ADC	1 Input Scan Se	election bit				
	1 = Selects C 0 = Skips CTI	TMU on-chip te MU on-chip tem	mperature mea	easurement fo surement for i	r input scan (CT nput scan (CTM	MU TEMP) IU TEMP)	
bit 13-11	Unimplemen	ted: Read as '0)'				
bit 10	CSS26: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A3/AN6 for inpu	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A2/AN0 for inpu	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O 0 = Skips OA	A1/AN3 for input 1/AN3 for input	ut scan scan				
bit 7-0	Unimplemen	ted: Read as 'o)'				
Note 1: All AD1CSSH bits can be selected by user software. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.							

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved.
		0001	Reserved.
		0010	Disable Step Delay Timer (PTGSD).
		0011	Reserved.
		0100	Reserved.
		0101	Reserved.
		0110	Enable Step Delay Timer (PTGSD).
		0111	Reserved.
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
		1010	Reserved.
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
	PTGADD(1)	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
		0110	Reserved.
		0111	Reserved.
	PTGCOPY(1)	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
		1110	Reserved.
		1111	Reserved.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

30.1 DC Characteristics

|--|

Characteristic			Maximum MIPS		
	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range		-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$ I/O Pin Power Dissipation:		PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θја	48.3		°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θја	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Param. Symbol Characteristic Min. Typ.				Max.	Units	Conditions	
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)	
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—		V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—		V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)	
HDO20A	20A VOH1 Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	_	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)		
			2.0	—			IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)	
			3.0	—			IOH ≥ -2 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_		V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)	
			2.0	_			IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V (Note 1)	

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width		5.00	5.30	5.60
Overall Length		9.90	10.20	10.50
Foot Length		0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness		0.09	-	0.25
Foot Angle		0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05 – 0.15		
Foot Length	L	0.45 0.60 0.75		
Footprint	L1	1.00 REF		
Foot Angle	φ	0° 3.5° 7°		
Overall Width	Е	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09 – 0.20		
Lead Width	b	0.17 0.22 0.27		
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11° 12° 13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B