

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc206-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_		_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6					_	_			_				_	—		SGHT	0000
INTTREG	08C8						ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—		—		_	—	—	-	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	—	_		—		QEI1IF	PSEMIF	—					MI2C2IF	SI2C2IF		0000	
IFS4	0808	_	_	CTMUIF	_		—	_	_		C1TXIF		_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	—	—	—	—	—	_	—	—	—	_	—	—	_	0000
IFS6	080C	—	—	—	—	—	—	—	—	_	—	—	—	_	—	—	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF		_		—	_	_		_		_		—	—		0000
IFS9	0812	_	_		_		—	_	_		PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	—	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	—	—	QEI1IE	PSEMIE	—	_	—	—	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	—	—	CTMUIE	—	—	—	—	—	_	C1TXIE	—	—	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	—	_	—	—	—	_	—	_	—	_	_	—	_	0000
IEC6	082C	—	—	_	—	_	—	—	—	_	—	_	—	_	_	—	PWM3IE	0000
IEC7	082E	—	—	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC8	0830	JTAGIE	ICDIE	_	—	_	—	—	—	_	—	_	—	_	—	—	_	0000
IEC9	0832	—	—	_	—	_	—		—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	—		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		_	1	DMA0IP<2:0>		4444
IPC2	0844	—		U1RXIP<2:0)>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	—	—	_	—	_	0)MA1IP<2:	0>	_		AD1IP<2:0>		_		U1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>		_		CMIP<2:0	>			MI2C1IP<2:0	>	_	:	SI2C1IP<2:0>		4444
IPC5	084A	—	—	_	—	_	—		—	_	—	_	—	_		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		_		OC4IP<2:0)>	_		OC3IP<2:0>		_	1	DMA2IP<2:0>		4444
IPC7	084E	—		U2TXIP<2:0	>	_	ι	J2RXIP<2:(0>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850	—		C1IP<2:0>	-	_	0	C1RXIP<2:(0>	_		SPI2IP<2:0>		_		SPI2EIP<2:0>		4444
IPC9	0852	—	—	_	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	1	DMA3IP<2:0>		0444
IPC12	0858	—	—	_	—	_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	—	—	_	0440
IPC14	085C	—	_	—	—	—	(QEI1IP<2:0)>	_	PSEMIP<2:0>		—	—	0440			
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	—	_	—	_	(C1TXIP<2:0	0>	_	—	—	—	_	_	_	_	0400
IPC19	0866	—	—	_	—	_	—	—	—	_		CTMUIP<2:0	>	_	—	—	_	0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

TABLE 4	-12:	PWM RI	EGISTE	R MAP	FOR de	sPIC33E	PXXXN	AC20X/50	DX AND F	PIC24EP	PXXXM	C20X [DEVICE	S ONI	_Y			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	/TPS<3:0>		0000
PTCON2	0C02	_	—	_	_	_	—	_	—	—	_	—	_	—		PCLKDIV<2:	0>	0000
PTPER	0C04		PTPER<15:0> 00F8															
SEVTCMP	0C06								SEVTCMP<	5:0>								0000
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	CHPCLKEN	_	_	_	_	_					CHOPCI	_K<9:0>					0000
PWMKEY	0C1E								PWMKEY<1	5:0>								0000
Legend: -	– = unir	mplemented, re	ead as '0'.	Reset valu	es are show	vn in hexade	ecimal.											-

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	C000
FCLCON1	0C24	_		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:)>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26				PDC1<15:0>							FFF8						
PHASE1	0C28				PHASE1<15:0>							0000						
DTR1	0C2A	_	_							DTR1<13	:0>							0000
ALTDTR1	0C2C	_	_						A	LTDTR1<1	13:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLR PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPL							BPLL	0000					
LEBDLY1	0C3C	—	_	—	—						LEB<11	:0>						0000
AUXCON1	0C3E	_	_	- - BLANKSEL<3:0> - - CHOPSEL<3:0> CHOPHEN CHOPLEN						CHOPLEN	0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	То	protec	t	agains	st	misal	lign	ed	st	ack
	acc	esses,	W	15<0>	is	fixed	to	'0'	by	the
	hard	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addre	SS	Bit-Reversed Address							
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:									
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15-4 Unimpler		mented: Read as '0'							
bit 3 PPST3: D		MA Channel 3 Ping-Pong	Mode Status Flag bit						
	1 = DMA	STB3 register is selected							
	0 = DMA	STA3 register is selected							
bit 2	PPST2: [MA Channel 2 Ping-Pong	Mode Status Flag bit						
	1 = DMA	STB2 register is selected							
	0 = DMA	STA2 register is selected							
bit 1	PPST1: [MA Channel 1 Ping-Pong	Mode Status Flag bit						

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

11-0	R-0	R-0	R-0	U-O	R/W-v	R/W-v	R/W-v		
	COSC2	COSC1	COSCO	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾		
bit 15							bit 8		
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾		—	OSWEN		
bit 7							bit 0		
			(
Legend:	- h l - h :4	y = Value set	from Configur	ation bits on P	'OR	(0)			
		vv = vvritable	DIL	0 = 0	nented bit, read	as u			
-n = value	alpor	I = BILIS Set		0 = BIUS CIE	ared		IOWN		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	')				
	111 = Fast R(C Oscillator (F	RC) with Divid	le-by-n	,				
	110 = Fast R	C Oscillator (F	RC) with Divid	le-by-16					
	101 = Low-Po	101 = Low-Power RC Oscillator (LPRC)							
	011 = Primary	100 = Reserved 011 = Primary Oscillator (XT, HS, FC) with PLI							
	010 = Primary	y Oscillator (X	ſ, HS, EC)						
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid RC)	le-by-N and PL	L (FRCPLL)				
bit 11	Unimplemen	ted: Read as '	0'						
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)					
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n					
	110 = Fast R	C Oscillator (F	RC) with Divic	le-by-16					
	101 - Low-PC 100 = Reserv	ed							
	011 = Primary	y Oscillator (X	r, HS, EC) wit	h PLL					
	010 = Primary	y Oscillator (X	r, HS, EC)						
	001 = Fast R0 000 = Fast R0	C Oscillator (FI	RC) with Divid RC)	Ie-by-N and PL	L (FRCPLL)				
bit 7	CLKLOCK: C	lock Lock Ena	ble bit						
	1 = If (FCKS	M0 = 1), then c	lock and PLL	configurations	are locked; if (F	CKSM0 = 0), t	hen clock and		
	0 = Clock and	d PLL selection	ns are not lock	ked, configurat	ions may be mo	dified			
bit 6	IOLOCK: I/O	Lock Enable b	it						
	1 = I/O lock is	active							
	0 = I/O lock is	not active	/ I I \						
bit 5	LOCK: PLL L	ock Status bit	(read-only)	ant un tincaria	a atiafia d				
	 1 = indicates 0 = Indicates 	that PLL is in	t of lock, start	-up timer is -up timer is in	progress or PLL	is disabled			
Note 1:	Writes to this regis	ter require an e erence Manual	unlock sequer " (available fro	nce. Refer to " om the Microch	Oscillator" (DS ip web site) for	70580) in the <i>"</i> o details.	dsPIC33/		
2:	Direct clock switch This applies to cloc	es between an ck switches in o	y primary osci either direction	llator mode wit	h PLL and FRC ances, the appli	PLL mode are r cation must sw	not permitted. itch to FRC		
	moue as a transitio	nai Clock Sour		IE IWO PLL IIIO	u c s.				

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
		II DI CMPX = 1, PWWXH IS SNOTENED and PWWXL IS lengthened.
		When Set to 0.2. If DTCMPx = 0. PW/MxH is shortened and PW/MxL is lengthened
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source
		for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
Legend:							
bit 7							bit 0
			POSCN	IT<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			POSCN	IT<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	NT<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- · Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	CVR2OE ⁽¹⁾	—	—	—	VREFSEL	—	—
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVRE	N CVR1OE ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	i as '0'	
-n = Value	e at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15	Unimplemen	ted: Read as '	0'		(1)		
bit 14	CVR2OE: Co	mparator Volta	ige Reference	2 Output Ena	ble bit ⁽¹⁾		
	1 = (AVDD - A 0 = (AVDD - A	AVSS)/2 is conr AVSS)/2 is disce	nected to the C	VREF20 pin the CVREF20	pin		
bit 13-11	Unimplemen	ted: Read as '	0'				
bit 10	VREFSEL: C	omparator Voli	tage Reference	e Select bit			
	1 = CVREFIN :	= VREF+	-				
	0 = CVREFIN i	s generated by	y the resistor n	etwork			
bit 9-8	Unimplemen	ted: Read as '	0'				
bit 7	CVREN: Con	nparator Voltag	je Reference E	nable bit			
	1 = Compara	tor voltage refe	erence circuit is	s powered on	wn		
bit 6	CVR1OF: Co	mparator Volta	age Reference	1 Output Ena	ble bit(1)		
bit o	1 = Voltage le	evel is output o	n the CVRFF10				
	0 = Voltage le	evel is disconne	ected from the	n CVREF10 pi	'n		
bit 5	CVRR: Comp	arator Voltage	Reference Ra	inge Selectior	n bit		
	1 = CVRSRC/2	24 step-size					
	0 = CVRSRC/3	32 step-size					
bit 4	CVRSS: Com	parator Voltag	e Reference S	ource Selecti	on bit ⁽²⁾		
	1 = Compara 0 = Compara	tor voltage refe tor voltage refe	erence source,	CVRSRC = (V CVRSRC = A)	(REF+) – (AVSS) /DD – AVSS		
bit 3-0	CVR<3:0> Co	omparator Volt	age Reference	Value Select	ion $0 \leq CVR < 3$:	0> ≤ 15 bits	
	When CVRR	= 1:					
	CVREFIN = (C	VR<3:0>/24) •	(CVRSRC)				
	When CVRR	= 0:					
	CVREFIN = (C	VRSRC/4) + (C	VR<3:0>/32) •	(CVRSRC)			
Note 1:	CVRxOE overrides	s the TRISx an	d the ANSELx	bit settinas.			

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 27-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID<2	3:16> (1)			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID<	7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplen	nented bit		

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV<	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-only bit			U = Unimpler	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHAR		TICS	Standard Ope (unless other Operating tem	erating Co wise state perature	onditions: ed) -40°C ≤ -40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 Tcy	—	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

INDEX

Α

	01
AC Characteristics	71
10-Bit ADC Conversion Requirements4	65
12-Bit ADC Conversion Requirements4	63
ADC Module4	59
ADC Module (10-Bit Mode)	73
ADC Module (12-Bit Mode)	73
Capacitive Loading Requirements on	
Output Pins4	13
DMA Module Requirements4	65
ECANx I/O Requirements4	54
External Clock4	14
High-Speed PWMx Requirements4	22
I/O Timing Requirements4	16
I2Cx Bus Data Requirements (Master Mode)	51
I2Cx Bus Data Requirements (Slave Mode)	53
Input Capture x Requirements	20
Internal FRC Accuracy	15
Internal I PRC Accuracy 4	15
Internal RC Accuracy 4	.72
Load Conditions 413 4	71
OCx/PWMx Mode Requirements 4	.21
On Amp/Comparator Voltage Reference	
Settling Time Specifications 4	57
Output Compare x Requirements 4	.21
PLL Clock 415.4	71
OEI External Clock Requirements 410, 4	23
OEI Index Pulse Requirements 4	25
Quadrature Decoder Requirements	24
Reset Watchdog Timer Oscillator Start-un Timer	24
Power-up Timer Pequirements	47
SPI1 Master Mode (Full-Dupley, CKE = 0, CKP = v	17
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x,	лт лт
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41 40
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41 40
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41 40 39
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Eull-Duplex, CKE = 0 4	41 40 39 38
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4	41 40 39 38
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, 4	41 40 39 38 49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4	.41 .40 .39 .38 .49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1 4	41 40 39 38 49 47
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4	41 40 39 38 49 47
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4	41 40 39 38 49 47 43
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4	41 40 39 38 49 47 43
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4	41 40 39 38 49 47 43 45
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4	41 40 39 38 49 47 43 45 MP
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4	41 40 39 38 49 47 43 45 MP 29
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Paquirements 4	41 40 39 38 49 47 43 45 MP 29
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4	41 40 39 38 49 47 43 45 MP 29 28
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4	41 40 39 38 49 47 43 45 MP 29 28 27
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Half-Duplex, Pate Summary4SPI2 Master Mode (Half-Duplex, Pate Summary4SPI2 Master Mode (Half-Duplex, Pate Summary4	41 40 39 38 49 47 43 45 47 43 45 29 28 27 26
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI1 Maximum Data/Clock Rate Summary 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 4 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 4 SPI2 Master Mode (Half-Duplex, Transmit Only) 4 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 4 SPI2 Master Mode (Half-Duplex, Transmit Only) 4 SPI2 Maximum Data/Clock Rate Summary 4 SPI2 Maximum Data/Clock Rate Summary 4 <td>41 40 39 38 49 47 43 45 47 43 45 29 28 27 26</td>	41 40 39 38 49 47 43 45 47 43 45 29 28 27 26
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Pequirements4SPI2 Maximum Data/Clock Rate Summary4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Pequirements4	41 40 39 38 49 47 43 45 47 43 45 29 28 27 26 37
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Maximum Data/Clock Rate Summary4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4	41 40 39 38 49 47 43 45 47 43 45 29 28 27 26 37
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM CKP = 0, SMP = 0) Requirements4	41 40 39 38 49 47 43 45 47 43 45 47 28 28 27 26 37 MP
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM = 0) Requirements4	41 40 39 38 49 47 43 45 47 43 45 47 29 28 27 26 37 MP 35
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4	41 40 39 38 49 47 43 45 47 43 45 47 43 45 28 27 26 37 WP 35 31
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Re	41 40 39 38 49 47 43 45 47 43 45 47 43 45 28 27 26 37 MP 35 31
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI1 Maximum Data/Clock Rate Summary4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements4SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements4SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements4	41 40 39 38 49 47 43 45 47 43 45 29 28 27 26 37 WP 26 37 WP 35 31 33

Timer1 External Clock Requirements	418
Timer2/Timer4 External Clock Requirements	419
Timer3/Timer5 External Clock Requirements	419
UARTx I/O Requirements	454
ADC	
Control Registers	325
Helpful Tips	324
Key Features	321
Resources	324
Arithmetic Logic Unit (ALU)	44
Assembler	
MPASM Assembler	398
D	
Bit-Reversed Addressing	115
Example	116
Implementation	115
Sequence Table (16-Entry)	116
Block Diagrams	
Data Access from Program Space	
Address Generation	117
16-Bit Timer1 Module	203
ADC Conversion Clock Period	323
ADC with Connection Options for ANX Pins	
and Op Amps	322
Arbiter Architecture	110
BEMF Voltage Measurement Using ADC	34
Boost Converter Implementation	32
CALL Stack Frame	111
Comparator (Module 4)	350
Connections for On-Chip Voltage Regulator	384
CPU Core	00 170
CRC Module	3/3
	374
Digital Filter Interconnect	310
	1/10
DMA Controller Medule	191
	139 50¥
and PIC24EPXXXCP/MC20X	25 25
	20 288
EDS Read Address Generation	200
EDS Write Address Generation	106
Example of MCLR Pin Connections	100
High-Speed PWMx Architectural Overview	00
High-Speed PWMx Register Interconnection	228
I2Cx Module	274
Input Capture x	213
Interleaved PEC	210
Multiphase Synchronous Buck Converter	33
Multiplexing Remappable Output for RPn	180
Op Amp Configuration A.	
Op Amp Configuration B.	
Op Amp/Comparator Voltage Reference Module.	356
Op Amp/Comparator x (Modules 1. 2. 3)	355
Oscillator System	153
Output Compare x Module	219
PLL	154
Programmer's Model	38
PTG Module	338
Quadrature Encoder Interface	250
Recommended Minimum Connection	30