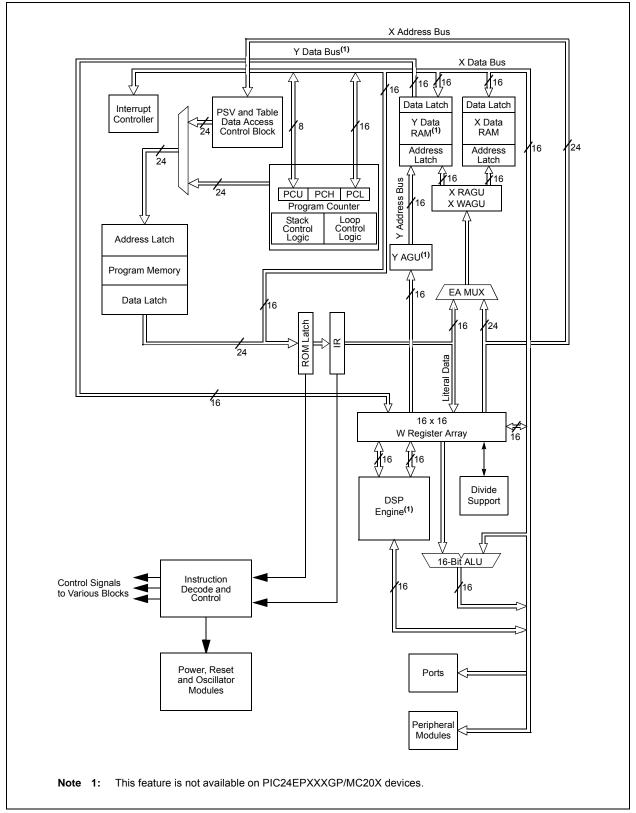


Welcome to E-XFL.COM

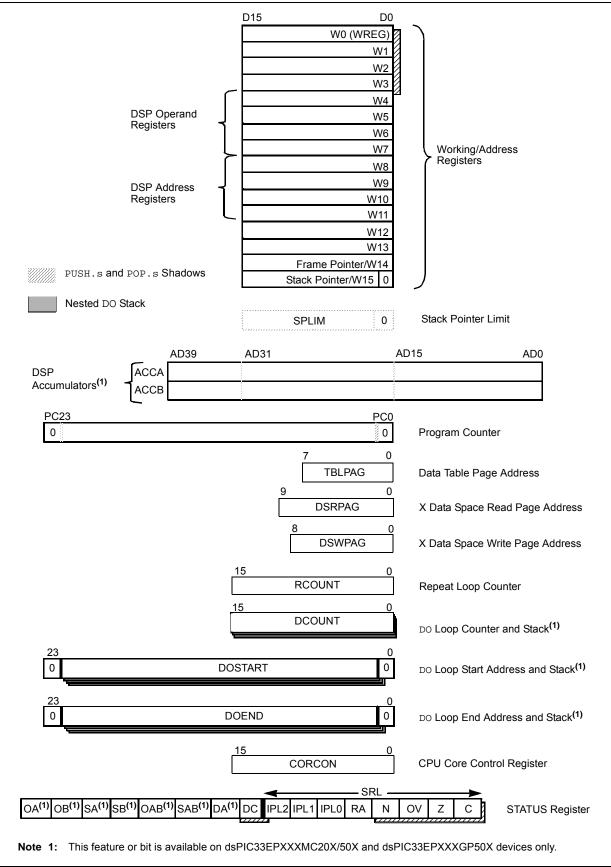
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc502-e-mm


Email: info@E-XFL.COM

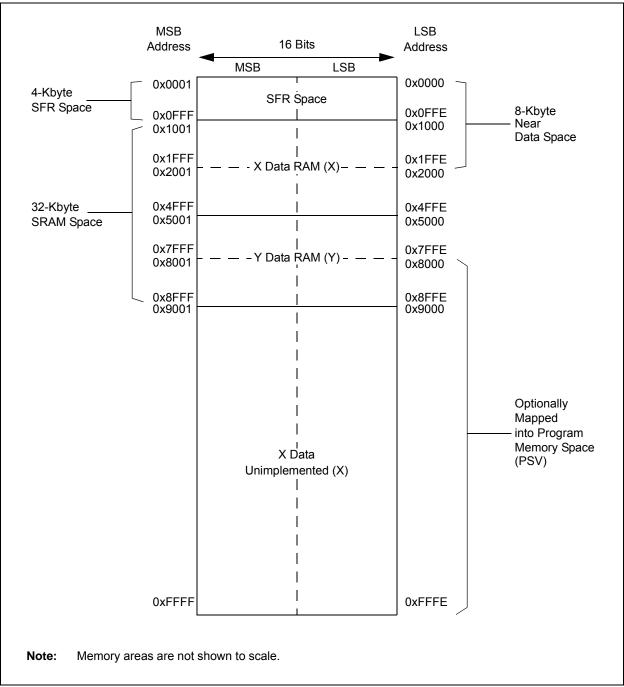

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X CPU BLOCK DIAGRAM

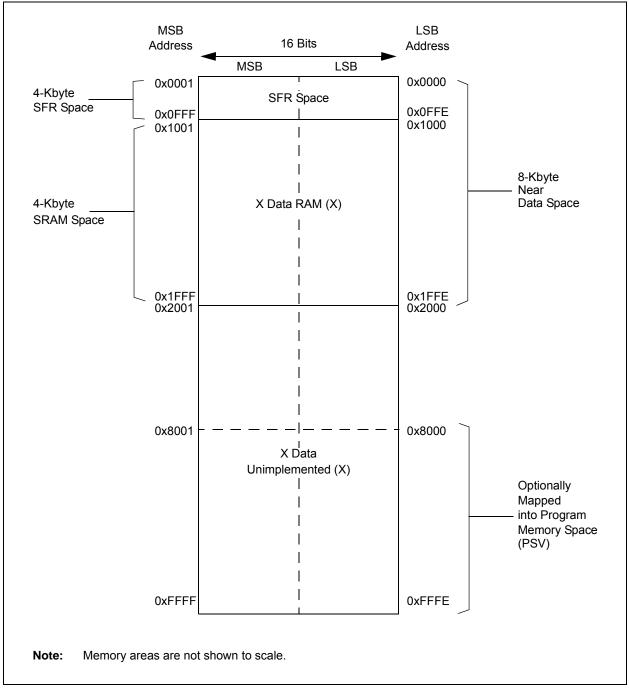


FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	insmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	ŝ	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	insmit and R	eceive Buff	er Registe	r						0000

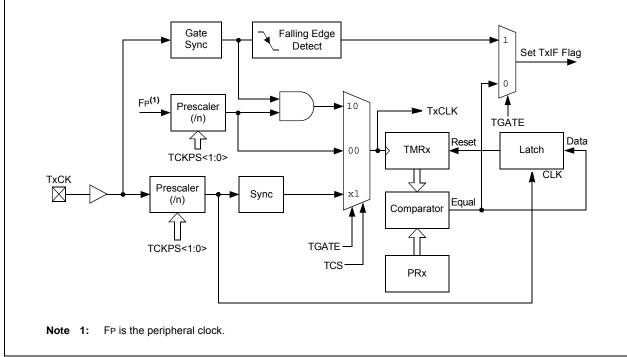
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

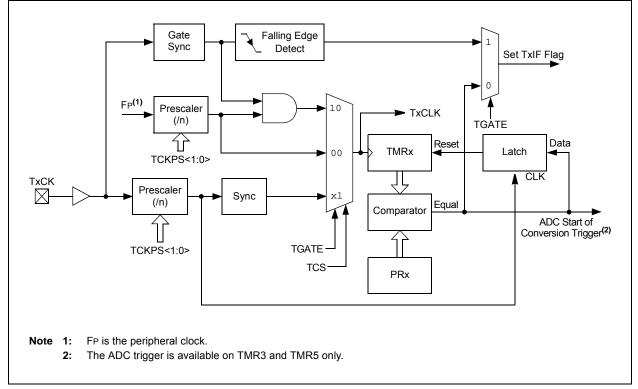
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_		_	_	TRISA8	_	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	011F
PORTA	0E02	_	_	_	_	_	_	_	RA8	_	_	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	_	_	LATA8	_	_	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	_	_	ODCA8	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	_	_	_	_	CNIEA8	_	_	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	_	_	CNPUA8	_	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	_	_	CNPDA8	_	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	_	—	_	—	_	—	_	—	—	ANSA4	—	—	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	-	_	-	—	-	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


TABLE 4-58: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_	_	_	—	—	TRISC8	_	_		_		-	TRISC1	TRISC0	0103
PORTC	0E22			-	-	-	—	_	RC8	—	-		_			RC1	RC0	xxxx
LATC	0E24			_	_	_	_	_	LATC8	_	_	_	_	_	_	LATC1	LATC0	xxxx
ODCC	0E26			_	_	_	_	_	ODCC8	_	_	_	_	_	_	ODCC1	ODCC0	0000
CNENC	0E28	—	_	-	_		_	_	CNIEC8	—			_			CNIEC1	CNIEC0	0000
CNPUC	0E2A			_	_	_	_	_	CNPUC8	_	_	_	_	_	_	CNPUC1	CNPUC0	0000
CNPDC	0E2C			_	_	_	_	_	CNPDC8	_	_	_	_	_	_	CNPDC1	CNPDC0	0000
ANSELC	0E2E	-	_	_	_	_	—	—	_	—		_	_	_		ANSC1	ANSC0	0003

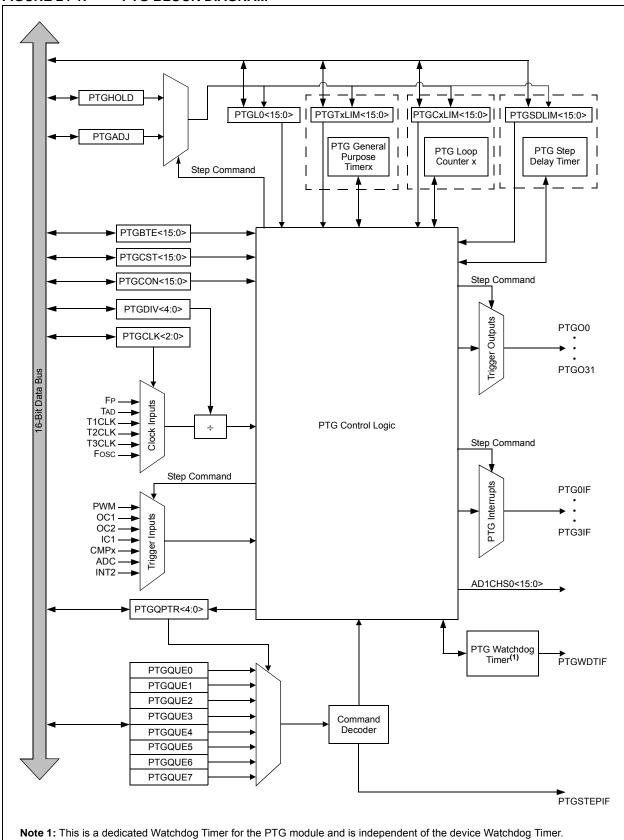

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER	25-3: CM40	CON: COMPA	RATOR 4 CO	ONTROL RE	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL			_	CEVT	COUT
bit 15			•	·			bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	0-0	CREF ⁽¹⁾	0-0	0-0	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7	EVPOLU	_	UREF /	_	—		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	=	arator Enable b	it				
		ator is enabled ator is disabled					
bit 14	COE: Compa	arator Output E	nable bit				
		ator output is pr ator output is in		xOUT pin			
bit 13	CPOL: Com	parator Output	Polarity Select	bit			
	1 = Compara	ator output is in	verted				
	0 = Compara	ator output is no	ot inverted				
bit 12-10	Unimpleme	nted: Read as	0'				
bit 9	CEVT: Comp	parator Event b	it				
	interrupt	ator event acc ts until the bit is ator event did r	cleared	POL<1:0> set	tings occurred;	disables future	triggers and
bit 8	•	parator Output					
		. = 0 (non-inver					
	1 = VIN + > V		teu polanty).				
	0 = VIN+ < V	ÍN-					
	When CPOL	. = 1 (inverted p	olarity):				
	1 = VIN+ < V						
	0 = VIN + > V						
bit 7-6		>: Trigger/Even		-			
	10 = Trigger		generated only			or output (while (e polarity selecte	
		L = 1 (inverted) -high transition		ator output.			
		L = 0 (non-inve -low transition		ator output.			
		/event/interrupt (while CEVT = 0		on low-to-higi	n transition of th	e polarity selecte	ed comparator
		L = 1 (inverted) -low transition		ator output.			
	If CPO	<u>L = 0 (non-inve</u> -high transition	rted polarity):				
		/event/interrupt	=	-			
Note 1: Inj	puts that are sel	lected and not a	available will be	e tied to Vss. S	see the "Pin Dia	agrams" sectior	n for available

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

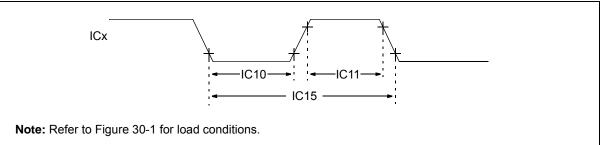
However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:


- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

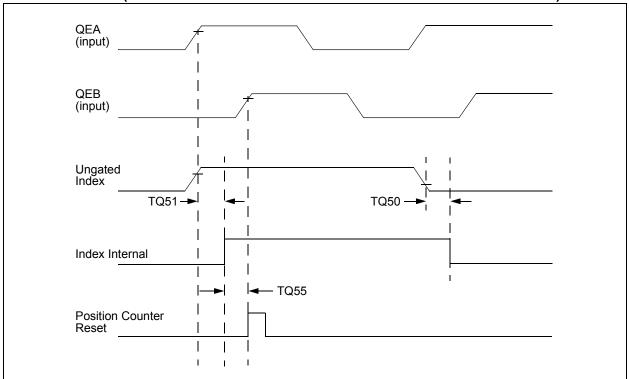
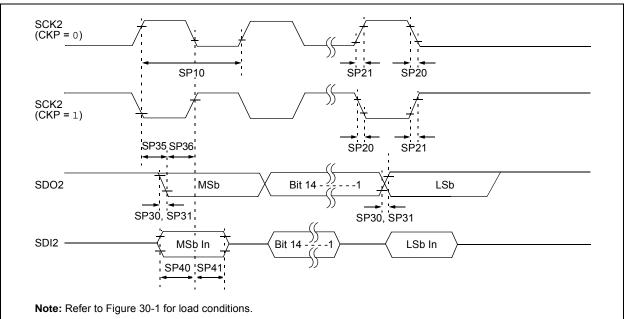

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Con	ditions
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15	
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

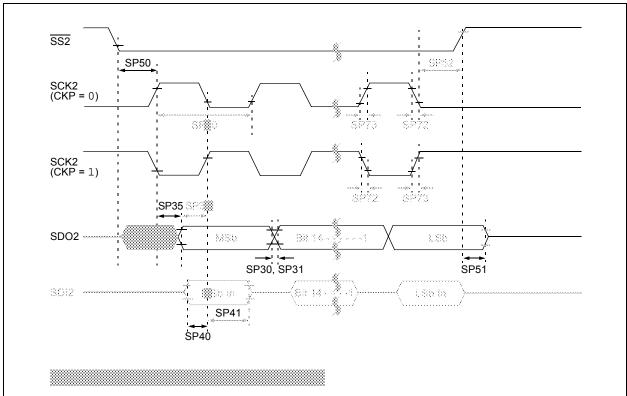

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions				
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)				
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)				
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns					

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

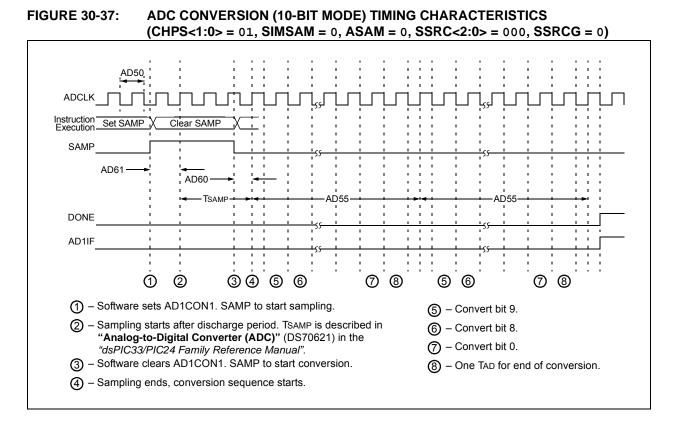

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions				
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)				
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)				
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)				
SP30	TdoF	SDO2 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)				
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)				
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns					
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns					
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns					
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns					

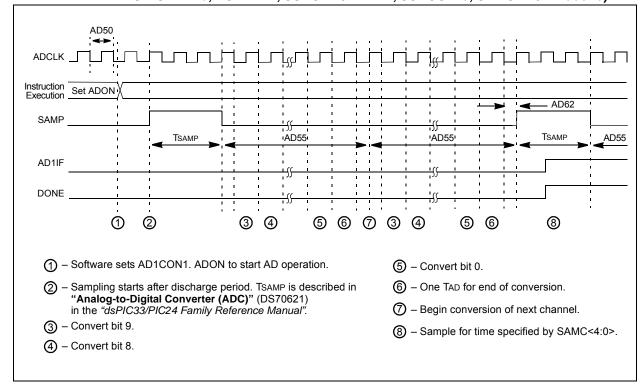
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.


FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta ≤	+85°C for Industrial
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	-40 Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	TCY/2 (BRG + 2)		μ S	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS	
			400 kHz mode	Tcy/2 (BRG + 2)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μS	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2		μS	
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	_	μS	Only relevant for
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)	_	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	_	μS	After this period, the
		Hold Time	400 kHz mode	TCY/2 (BRG +2)	—	μS	first clock pulse is
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)	_	μS	
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)		μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	
IM34	THD:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)		μS	
		Hold Time	400 kHz mode	TCY/2 (BRG + 2)		μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	
		From Clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽²⁾		400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be
			400 kHz mode	1.3		μS	free before a new
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can star
IM50	Св	Bus Capacitive L	oading	—	400	pF	
IM51	Tpgd	Pulse Gobbler De	elay	65	390	ns	(Note 3)


TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

DS70000657H-page 464

DC CHAF	RACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)			
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)			
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)			
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)			
HDO20A	Vон1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	_	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)			
			2.0	_	—		$IOH \ge -3.7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ (Note 1)			
			3.0		—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)			
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5		_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)			
			2.0	_	—		$IOH \ge -6.8 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$ (Note 1)			
			3.0	_	—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)			

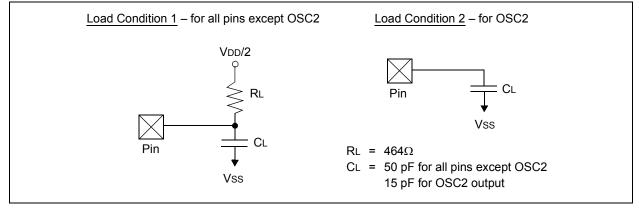
TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

31.2 **AC Characteristics and Timing Parameters**


The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)		
AC CHARACTERIO NOC	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$		
	Operating voltage VDD range as described in Table 31-1.		

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.