Microchip Technology - <u>DSPIC33EP256MC502T-I/MM Datasheet</u> Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 70 MIPs | | Connectivity | CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 256KB (85.5K x 24) | | Program Memory Type | FLASH | | EEPROM Size | | | RAM Size | 16K x 16 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 6x10b/12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-VQFN Exposed Pad | | Supplier Device Package | 28-QFN-S (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc502t-i-mm | # **Pin Diagrams (Continued)** - Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" for available peripherals and for information on limitations. - 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See **Section 11.0 "I/O Ports"** for more information. - 3: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2. FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES # 4.2 Data Address Space The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU has a separate 16-bit-wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-7 through Figure 4-16. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words). The base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes. dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned. ### 4.2.1 DATA SPACE WIDTH The data memory space is organized in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses. # 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations. A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the LSB. The MSB is not modified. A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address. ### 4.2.3 SFR SPACE The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information. ### 4.2.4 NEAR DATA SPACE The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer. TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY | File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | AII
Resets | |------------|---------------|--------|-----------|--------|--------|--------|--------|--------|------------|-------------|----------|--------|-------|-------|-------|--------|--------|---------------| | | 0400-
041E | | | | | | | | See defini | tion when W | IN = x | | | | | | | | | C1BUFPNT1 | 0420 | | F3BF | P<3:0> | | | F2BI | P<3:0> | | | F1BP | <3:0> | | | F0BP | <3:0> | | 0000 | | C1BUFPNT2 | 0422 | | F7BF | P<3:0> | | | F6BI | P<3:0> | | | F5BP | <3:0> | | | F4BP | <3:0> | | 0000 | | C1BUFPNT3 | 0424 | | F11B | P<3:0> | | | F10B | P<3:0> | | | F9BP | <3:0> | | | F8BP | <3:0> | | 0000 | | C1BUFPNT4 | 0426 | | F15B | P<3:0> | | | F14B | P<3:0> | | | F13BF | °<3:0> | | | F12BP | ·<3:0> | | 0000 | | C1RXM0SID | 0430 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | MIDE | _ | EID< | 17:16> | xxxx | | C1RXM0EID | 0432 | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXM1SID | 0434 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | MIDE | _ | EID< | 17:16> | xxxx | | C1RXM1EID | 0436 | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXM2SID | 0438 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | MIDE | _ | EID< | 17:16> | xxxx | | C1RXM2EID | 043A | | EID<15:8> | | | | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF0SID | 0440 | | SID<10:3> | | | | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF0EID | 0442 | | EID<15:8> | | | | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF1SID | 0444 | | SID<10:3> | | | | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF1EID | 0446 | | EID<15:8> | | | | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF2SID | 0448 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF2EID | 044A | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF3SID | 044C | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF3EID | 044E | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF4SID | 0450 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF4EID | 0452 | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF5SID | 0454 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF5EID | 0456 | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF6SID | 0458 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF6EID | 045A | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF7SID | 045C | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF7EID | 045E | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF8SID | 0460 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF8EID | 0462 | | EID<15:8> | | | | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF9SID | 0464 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF9EID | 0466 | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | | | xxxx | | C1RXF10SID | 0468 | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | | C1RXF10EID | 046A | | | | EID< | :15:8> | | | | | | | EID< | 7:0> | | • | | xxxx | | C1RXF11SID | 046C | | | | SID< | :10:3> | | | | | SID<2:0> | | _ | EXIDE | _ | EID< | 17:16> | xxxx | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. # TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------------|--------|------------|--------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|---------------| | RPINR0 | 06A0 | _ | | | | INT1R<6:0> | | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | RPINR1 | 06A2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | INT2R<6:0> | | | | 0000 | | RPINR3 | 06A6 | 1 | _ | _ | _ | _ | _ | _ | _ | - | | | - | T2CKR<6:0> | > | | | 0000 | | RPINR7 | 06AE | 1 | | | | IC2R<6:0> | | | | - | | | | IC1R<6:0> | | | | 0000 | | RPINR8 | 06B0 | 1 | | IC4R<6:0> | | | | | | - | | | | IC3R<6:0> | | | | 0000 | | RPINR11 | 06B6 | 1 | _ | | | | | | | - | | | (| OCFAR<6:0 | > | | | 0000 | | RPINR12 | 06B8 | 1 | | FLT2R<6:0> | | | | | | - | | | | FLT1R<6:0> | • | | | 0000 | | RPINR14 | 06BC | 1 | | | (| QEB1R<6:0 | > | | | - | | | (| QEA1R<6:0> | > | | | 0000 | | RPINR15 | 06BE | 1 | | | Н | OME1R<6:0 |)> | | | - | | | II | NDX1R<6:0: | > | | | 0000 | | RPINR18 | 06C4 | 1 | _ | _ | _ | _ | _ | _ | _ | - | | | ι | J1RXR<6:0> | > | | | 0000 | | RPINR19 | 06C6 | 1 | _ | _ | _ | _ | _ | _ | _ | - | | | ι | J2RXR<6:0> | > | | | 0000 | | RPINR22 | 06CC | 1 | | | S | CK2INR<6:0 |)> | | | - | | | | SDI2R<6:0> | • | | | 0000 | | RPINR23 | 06CE | 1 | _ | _ | _ | _ | _ | _ | _ | - | | | | SS2R<6:0> | | | | 0000 | | RPINR26 | 06D4 | 1 | _ | | | | | | | - | - | _ | _ | _ | - | - | _ | 0000 | | RPINR37 | 06EA | _ | | SYNCI1R<6:0> | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | RPINR38 | 06EC | _ | | DTCMP1R<6:0> | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | RPINR39 | 06EE | _ | | | D | TCMP3R<6: | 0> | | | _ | | | D | CMP2R<6: | 0> | | | 0000 | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. # TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------------|--------|--------|------------|--------|-------|-------|-------|-------------|-------|-------|------------|-------|-------|-------|---------------| | RPINR0 | 06A0 | _ | | | | INT1R<6:0> | | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | RPINR1 | 06A2 | 1 | _ | | | | | | | _ | | | | INT2R<6:0> | • | | | 0000 | | RPINR3 | 06A6 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | T2CKR<6:0> | | | | | 0000 | | | | RPINR7 | 06AE | 1 | | | | IC2R<6:0> | | | | _ | | | | IC1R<6:0> | | | | 0000 | | RPINR8 | 06B0 | 1 | | | | IC4R<6:0> | | | | _ | | | | IC3R<6:0> | | | | 0000 | | RPINR11 | 06B6 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | | | (| OCFAR<6:0 | > | | | 0000 | | RPINR18 | 06C4 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | | | ι | J1RXR<6:0 | > | | | 0000 | | RPINR19 | 06C6 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | U2RXR<6:0> | | | | | 0000 | | | | RPINR22 | 06CC | 1 | SCK2INR<6:0> | | | | | | | _ | | | ; | SDI2R<6:0> | • | | | 0000 | | RPINR23 | 06CE | 1 | _ | _ | _ | _ | _ | _ | _ | - | - SS2R<6:0> | | | | | | 0000 | | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. TABLE 4-49: PORTD REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------|--------|--------|--------|-------|--------|-------|--------|--------|-------|-------|-------|-------|-------|---------------| | TRISD | 0E30 | _ | _ | _ | _ | - | _ | _ | TRISD8 | _ | TRISD6 | TRISD5 | _ | _ | | _ | _ | 0160 | | PORTD | 0E32 | 1 | _ | _ | _ | _ | _ | _ | RD8 | | RD6 | RD5 | 1 | - | 1 | _ | _ | xxxx | | LATD | 0E34 | 1 | _ | _ | - | ı | ı | - | LATD8 | _ | LATD6 | LATD5 | - | _ | ı | _ | ı | xxxx | | ODCD | 0E36 | 1 | _ | _ | - | ı | ı | - | ODCD8 | _ | ODCD6 | ODCD5 | - | _ | ı | _ | ı | 0000 | | CNEND | 0E38 | 1 | _ | _ | _ | _ | _ | _ | CNIED8 | | CNIED6 | CNIED5 | 1 | - | 1 | _ | _ | 0000 | | CNPUD | 0E3A | 1 | _ | _ | - | ı | ı | - | CNPUD8 | _ | CNPUD6 | CNPUD5 | - | _ | ı | _ | ı | 0000 | | CNPDD | 0E3C | 1 | _ | _ | - | ı | ı | - | CNPDD8 | _ | CNPDD6 | CNPDD5 | - | _ | ı | _ | ı | 0000 | Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ### TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------| | TRISE | 0E40 | TRISE15 | TRISE14 | TRISE13 | TRISE12 | - | - | - | _ | - | - | _ | - | _ | _ | _ | 1 | F000 | | PORTE | 0E42 | RE15 | RE14 | RE13 | RE12 | _ | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ | - | xxxx | | LATE | 0E44 | LATE15 | LATE14 | LATE13 | LATE12 | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 1 | xxxx | | ODCE | 0E46 | ODCE15 | ODCE14 | ODCE13 | ODCE12 | _ | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ | _ | 0000 | | CNENE | 0E48 | CNIEE15 | CNIEE14 | CNIEE13 | CNIEE12 | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | CNPUE | 0E4A | CNPUE15 | CNPUE14 | CNPUE13 | CNPUE12 | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | 0000 | | CNPDE | 0E4C | CNPDE15 | CNPDE14 | CNPDE13 | CNPDE12 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | ANSELE | 0E4E | ANSE15 | ANSE14 | ANSE13 | ANSE12 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | F000 | **Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. # TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|---------------| | TRISF | 0E50 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | TRISF1 | TRISF0 | 0003 | | PORTF | 0E52 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | RF1 | RF0 | xxxx | | LATF | 0E54 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | LATF1 | LATF0 | xxxx | | ODCF | 0E56 | I | _ | _ | _ | - | ı | _ | _ | _ | _ | - | I | 1 | _ | ODCF1 | ODCF0 | 0000 | | CNENF | 0E58 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | CNIEF1 | CNIEF0 | 0000 | | CNPUF | 0E5A | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | CNPUF1 | CNPUF0 | 0000 | | CNPDF | 0E5C | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | 1 | _ | _ | _ | CNPDF1 | CNPDF0 | 0000 | **Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ### REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2 | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | |--------|-------|--------|-----|-----|-----|-----|-------| | GIE | DISI | SWTRAP | _ | _ | _ | _ | _ | | bit 15 | • | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-----|-----|--------|--------|--------| | _ | _ | _ | _ | _ | INT2EP | INT1EP | INT0EP | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 GIE: Global Interrupt Enable bit 1 = Interrupts and associated IE bits are enabled 0 = Interrupts are disabled, but traps are still enabled bit 14 DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active bit 13 **SWTRAP:** Software Trap Status bit 1 = Software trap is enabled0 = Software trap is disabled bit 12-3 **Unimplemented:** Read as '0' bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge0 = Interrupt on positive edge bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge0 = Interrupt on positive edge bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge0 = Interrupt on positive edge ### REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | |-------|-----|-----|-----|--------|--------|--------|--------| | _ | _ | _ | _ | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-4 Unimplemented: Read as '0' bit 3 PWCOL3: DMA Channel 3 Peripheral Write Collision Flag bit 1 = Write collision is detected0 = No write collision is detected bit 2 PWCOL2: DMA Channel 2 Peripheral Write Collision Flag bit 1 = Write collision is detected0 = No write collision is detected bit 1 PWCOL1: DMA Channel 1 Peripheral Write Collision Flag bit 1 = Write collision is detected0 = No write collision is detected bit 0 PWCOL0: DMA Channel 0 Peripheral Write Collision Flag bit 1 = Write collision is detected0 = No write collision is detected # REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-----|-------|-------|-------|-------| | _ | _ | _ | _ | IC4MD | IC3MD | IC2MD | IC1MD | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-----|-------|-------|-------|-------| | _ | _ | _ | _ | OC4MD | OC3MD | OC2MD | OC1MD | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 **Unimplemented:** Read as '0' bit 11 IC4MD: Input Capture 4 Module Disable bit 1 = Input Capture 4 module is disabled 0 = Input Capture 4 module is enabled bit 10 IC3MD: Input Capture 3 Module Disable bit 1 = Input Capture 3 module is disabled0 = Input Capture 3 module is enabled bit 9 IC2MD: Input Capture 2 Module Disable bit 1 = Input Capture 2 module is disabled0 = Input Capture 2 module is enabled bit 8 IC1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled0 = Input Capture 1 module is enabled bit 7-4 **Unimplemented:** Read as '0' bit 3 OC4MD: Output Compare 4 Module Disable bit 1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled bit 2 OC3MD: Output Compare 3 Module Disable bit 1 = Output Compare 3 module is disabled 0 = Output Compare 3 module is enabled bit 1 OC2MD: Output Compare 2 Module Disable bit 1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled bit 0 OC1MD: Output Compare 1 Module Disable bit 1 = Output Compare 1 module is disabled 0 = Output Compare 1 module is enabled ### 11.1.1 OPEN-DRAIN CONFIGURATION In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin. See the "**Pin Diagrams**" section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin. # 11.2 Configuring Analog and Digital Port Pins The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared. The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1). If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module. When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level). Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. ### 11.2.1 I/O PORT WRITE/READ TIMING One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a ${\tt NOP},$ as shown in Example 11-1. # 11.3 Input Change Notification (ICN) The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins. Note: Pull-ups and pull-downs on Change Notification pins should always be disabled when the port pin is configured as a digital output. # EXAMPLE 11-1: PORT WRITE/READ EXAMPLE ``` MOV 0xFF00, W0 ; Configure PORTB<15:8> ; as inputs MOV W0, TRISB ; and PORTB<7:0> ; as outputs NOP ; Delay 1 cycle BTSS PORTB, #13 ; Next Instruction ``` #### **TIMER2/3 AND TIMER4/5** 13.0 Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). > 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes. As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes: - · Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode) - · Single 32-Bit Timer - Single 32-Bit Synchronous Counter They also support these features: - · Timer Gate Operation - Selectable Prescaler Settings - Timer Operation during Idle and Sleep modes - Interrupt on a 32-Bit Period Register Match - Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only) - · ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only) Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers. For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags. A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3. Only Timer2, 3, 4 and 5 can trigger a DMA data transfer. ### REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED) ``` bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾ ``` - 11111 = No Sync or Trigger source for ICx 11110 = Reserved - 11101 = Reserved - 11100 = CTMU module synchronizes or triggers ICx - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$ - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$ - 11001 = CMP2 module synchronizes or triggers ICx⁽⁵⁾ - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$ - 10111 = Reserved - 10110 = Reserved - 10101 = Reserved - 10100 = Reserved - 10011 = IC4 module synchronizes or triggers ICx - 10010 = IC3 module synchronizes or triggers ICx - 10001 = IC2 module synchronizes or triggers ICx - 10000 = IC1 module synchronizes or triggers ICx - 01111 = Timer5 synchronizes or triggers ICx - 01110 = Timer4 synchronizes or triggers ICx - 01101 = Timer3 synchronizes or triggers ICx (default) - 01100 = Timer2 synchronizes or triggers ICx - 01011 = Timer1 synchronizes or triggers ICx - 01010 = PTGOx module synchronizes or triggers ICx⁽⁶⁾ - 01001 = Reserved - 01000 = Reserved - 00111 = Reserved - 00110 = Reserved - 00101 = Reserved - 00100 = OC4 module synchronizes or triggers ICx - 00011 = OC3 module synchronizes or triggers ICx - 00010 = OC2 module synchronizes or triggers ICx - 00001 = OC1 module synchronizes or triggers ICx - 00000 = No Sync or Trigger source for ICx ### Note 1: The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode. - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register. - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software. - 4: Do not use the ICx module as its own Sync or Trigger source. - 5: This option should only be selected as a trigger source and not as a synchronization source. - 6: Each Input Capture x (ICx) module has one PTG input source. See **Section 24.0** "Peripheral Trigger **Generator (PTG) Module**" for more information. PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4 # **REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER** | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-------|-------|-------|--------|-------|-------| | _ | _ | | | DTRx | <13:8> | | | | bit 15 | | | | | | | bit 8 | | R/W-0 | | |-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | DTRx<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 **Unimplemented:** Read as '0' bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits ### REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-------|-------|--------|----------|-------|-------| | _ | _ | | | ALTDTI | Rx<13:8> | | | | bit 15 | | | | | | | bit 8 | | R/W-0 | | |--------------|-------|-------|-------|-------|-------|-------|-------|--|--| | ALTDTRx<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 **Unimplemented:** Read as '0' bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits # REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED) bit 1 **SWAP:** SWAP PWMxH and PWMxL Pins bit - 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins - 0 = PWMxH and PWMxL pins are mapped to their respective pins - bit 0 OSYNC: Output Override Synchronization bit - 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary - **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1). - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed. # 17.2 QEI Control Registers ### REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|---------|-----------------------|-----------------------|-----------------------|---------------------|---------------------| | QEIEN | _ | QEISIDL | PIMOD2 ⁽¹⁾ | PIMOD1 ⁽¹⁾ | PIMOD0 ⁽¹⁾ | IMV1 ⁽²⁾ | IMV0 ⁽²⁾ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|------------------------|------------------------|------------|--------|-------|-------|-------| | _ | INTDIV2 ⁽³⁾ | INTDIV1 ⁽³⁾ | INTDIV0(3) | CNTPOL | GATEN | CCM1 | CCM0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter bit 9 **IMV1:** Index Match Value for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 **Unimplemented:** Read as '0' Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored. - 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits. - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate. # 18.3 SPIx Control Registers ### REGISTER 18-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|---------|-----|-----|-------|-------------|-------| | SPIEN | _ | SPISIDL | _ | _ | | SPIBEC<2:0> | 1 | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/C-0, HS | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0, HS, HC | R-0, HS, HC | |-------|-----------|--------|--------|--------|--------|-------------|-------------| | SRMPT | SPIROV | SRXMPT | SISEL2 | SISEL1 | SISEL0 | SPITBF | SPIRBF | | bit 7 | | | | | | • | bit 0 | | Legend: | C = Clearable bit | HS = Hardware Settable bit | t HC = Hardware Clearable bit | |-------------------|-------------------|----------------------------|-------------------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, re | ad as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 **Unimplemented:** Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 **Unimplemented:** Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred bit 5 SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = RX FIFO is empty 0 = RX FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set) # 21.2 Modes of Operation The ECAN module can operate in one of several operation modes selected by the user. These modes include: - · Initialization mode - · Disable mode - · Normal Operation mode - · Listen Only mode - · Listen All Messages mode - · Loopback mode Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits. ### 21.3 ECAN Resources Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464 ### 21.3.1 KEY RESOURCES - "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual" - · Code Samples - · Application Notes - Software Libraries - Webinars - All Related "dsPIC33/PIC24 Family Reference Manual" Sections - · Development Tools # REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | |--------|--------|--------|-----|-----|-----|-----|-------| | DMABS2 | DMABS1 | DMABS0 | _ | _ | _ | _ | | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-------|-------|-------|-------|-------| | _ | _ | _ | FSA4 | FSA3 | FSA2 | FSA1 | FSA0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 **DMABS<2:0>:** DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM bit 12-5 **Unimplemented:** Read as '0' bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = Read Buffer RB31 11110 = Read Buffer RB30 • • • 00001 = TX/RX Buffer TRB1 00000 = TX/RX Buffer TRB0 TABLE 27-1: CONFIGURATION BYTE REGISTER MAP | File
Name | Address | Device
Memory
Size
(Kbytes) | Bits 23-8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------|---------|--------------------------------------|--------------|-------------------------|------------------------|---------|-------------------------|-------------------------|------------|-------------|-------| | Reserved | 0057EC | 32 | _ | _ | _ | _ | | _ | _ | | _ | | | 00AFEC | 64 | | | | | | | | | | | | 0157EC | 128 | | | | | | | | | | | | 02AFEC | 256 | | | | | | | | | | | | 0557EC | 512 | | | | | | | | | | | Reserved | 0057EE | 32 | | | | | | | | | | | | 00AFEE | 64 | _ | _ | _ | _ | _ | _ | _ | _ | - | | | 0157EE | 128 | | | | | | | | | | | | 02AFEE | 256 | | | | | | | | | | | | 0557EE | 512 | | | | | | | | | | | FICD | 0057F0 | 32 | | | | | | | | | | | 05 | 00AFF0 | 64 | _ | Reserved ⁽³⁾ | _ | JTAGEN | Reserved ⁽²⁾ | Reserved ⁽³⁾ | _ | ICS< | :1:0> | | | 0157F0 | 128 | | | | | | | | | | | | 02AFF0 | 256 | | | | | | | | | | | | 0557F0 | 512 | | | | | | | | | | | FPOR | 0057F2 | 32 | | | | | | | | | | | | 00AFF2 | 64 | _ | | | | | | | | | | | 0157F2 | 128 | | WDTWIN<1:0> | | ALTI2C2 | ALTI2C1 | Reserved ⁽³⁾ | _ | _ | _ | | | 02AFF2 | 256 | | | | | | | | | | | | 0557F2 | 512 | | | | | | | | | | | FWDT | 0057F4 | 32 | _ | FWDTEN WIN | | PLLKEN | WDTPRE | | | | | | | 00AFF4 | 64 | | | | | | | | | | | | 0157F4 | 128 | | | WINDIS | | | | WDTPOS | POST<3:0> | | | | 02AFF4 | 256 | | | | | | | | | | | | 0557F4 | 512 | | | | | | | | | | | FOSC | 0057F6 | 32 | _ | FCKSM<1:0> | | IOL1WAY | _ | _ | | | | | | 00AFF6 | 64 | | | | | | | OSCIOFNC | POSCMD<1:0> | | | | 0157F6 | 128 | | | | | | | | | | | | 02AFF6 | 256 | | | | | | | | | | | | 0557F6 | 512 | | | | | | | | | | | FOSCSEL | 0057F8 | 32 | _ | IESO | PWMLOCK ⁽¹⁾ | _ | _ | _ | | | | | | 00AFF8 | 64 | | | | | | | FNOSC<2:0> | | | | | 0157F8 | 128 | | | | | | | | | | | | 02AFF8 | 256 | | | | | | | | | | | | 0557F8 | 512 | | | | | | | | | | | FGS | 0057FA | 32 | _ | - | | | _ | _ | _ | GCP | GWRP | | | 00AFFA | 64 | | | | | | | | | | | | 0157FA | 128 | | | _ | - | | | | | | | | 02AFFA | 256 | | | | | | | | | | | | 0557FA | 512 | | | | | | | | | | | Reserved | 0057FC | 32 | _ | - | - | 1 | - | _ | - | - | - | | | 00AFFC | 64 | | | | | | | | | | | | 0157FC | 128 | | | | | | | | | | | | 02AFFC | 256 | | | | | | | | | | | | 0557FC | 512 | | | | | | | | | | | Reserved | 057FFE | 32 | _ | - | - | - | - | _ | - | - | _ | | | 00AFFE | 64 | | | | | | | | | | | | 0157FE | 128 | | | | | | | | | | | | 02AFFE | 256 | | | | | | | | | | | | 0557FE | 512 | | | | | | | | | | | l amandi | | | read as '1'. | | | | | | | | | **Legend:** — = unimplemented, read as '1'. Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. ^{2:} This bit is reserved and must be programmed as '0'. ^{3:} These bits are reserved and must be programmed as '1'. #### 32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes Note: only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. Absolute Maximum 3.00 3.50 2.50 **FIGURE 32-2: VOH - 8x DRIVER PINS** 0.50 1.00 1.50 2.00 0.020 0.015 0.010 0.005 0.000 dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X