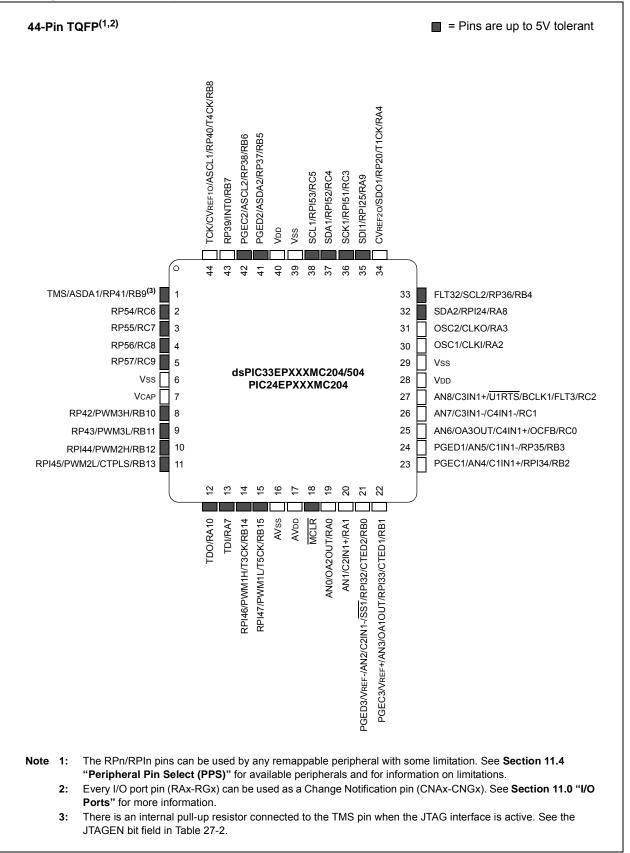


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mc504-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

				-	-	-												
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				NT1R<6:0>					_	_	_	_		_	_	0000
RPINR1	06A2		—	—	-		-			-				INT2R<6:0>				0000
RPINR3	06A6		_	_	_	_	_	_	_	_			-	[2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	—	_	_	_	_	—			(DCFAR<6:0	>			0000
RPINR12	06B8	_			l	=LT2R<6:0>				—				FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>			—			(QEA1R<6:0>	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			—			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	—	—	_	_	_	—			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	_		_	_	_	_	_	_				SS2R<6:0>				0000
RPINR37	06EA	_			S	YNCI1R<6:0)>			_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_			DT	CMP1R<6:	0>			_	_	_	_		_	_	_	0000
RPINR39	06EE	_			DT	CMP3R<6:	0>			—			D	CMP2R<6:	0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

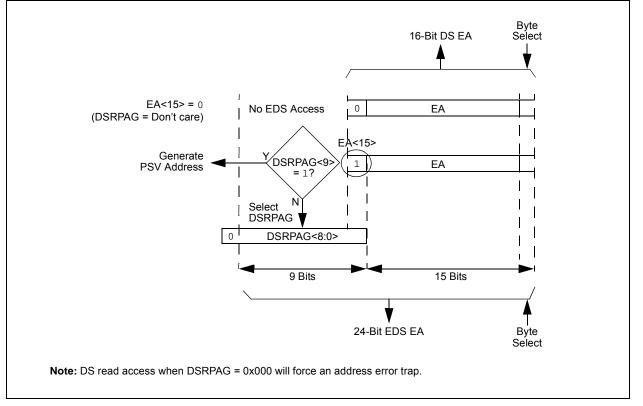
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD				I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762		_	_	-	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD			CRCMD	_	—	—		—	I2C2MD		0000
PMD4	0766	_	_	_	_	_	_			_	_	—	—	REFOMD	CTMUMD			0000
PMD6	076A	_		_	_	_				_		—	_		—			0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIND7	0700	_	_	_	_	_	_	_	_	_	—	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	—	—		_	—	PWM3MD	PWM2MD	PWM1MD	—			_	—		—	-	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


DS70000657H-page 95

4.4.1 PAGED MEMORY SCHEME

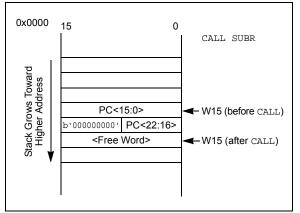
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
	D AALO	D 444 0	D 444 A	Date	D 444 0	DAVA	D # 44 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	FLT2R<6:0> (see Table 11	-2 for input pin	Fault 2 (FLT2)) to the Corresp nbers)	onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I	Fault 2 (FLT2) selection nur 121		onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI	Fault 2 (FLT2) selection nur 121 P1		onding RPn F	Pin bits	
bit 14-8 bit 7	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI nput tied to CM	Fault 2 (FLT2 selection nur 121 P1		onding RPn F	Pin bits	

NOTES:

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

REGISTER	16-7: PWMC	CONX: PWMX (CONTROL R	EGISTER				
HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTSTAT ⁽¹) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTC1		DTCP ⁽³⁾	0-0	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾	
	DTC0	DICPO		MIB3	CAIM-, 7	APRES ⁶⁷	-	
bit 7							bit	
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit			
R = Readab	le bit	W = Writable b	it	U = Unimple	mented bit, rea	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
L:4 4 5								
bit 15		ult Interrupt State rrupt is pending						
		interrupt is pending	ina					
		ared by setting F						
bit 14	CLSTAT: Cur	rent-Limit Interru	pt Status bit ⁽¹⁾					
		mit interrupt is p						
		nt-limit interrupt is	•					
bit 13		This bit is cleared by setting CLIEN = 0. TRGSTAT: Trigger Interrupt Status bit						
DIL 15	1 = Trigger interrupt is pending							
		r interrupt is pen						
	This bit is clea	ared by setting T	RGIEN = 0.					
bit 12		t Interrupt Enabl	e bit					
		rrupt is enabled	and the FLTC		a d			
bit 11		rrupt is disabled ent-Limit Interrup		TAT DILIS CIERT	eu			
		mit interrupt is e						
		mit interrupt is di		e CLSTAT bit is	s cleared			
bit 10	TRGIEN: Trig	ger Interrupt En	able bit					
		event generates						
	••	vent interrupts ar		the TRGSTA	F bit is cleared			
bit 9		dent Time Base			() A			
		register provides			0			
bit 8		er Duty Cycle Re			-			
		ister provides du	•		WM generator			
		jister provides du				-		
Note 1: S	oftware must clea	ar the interrupt s	tatus here and	in the corresp	onding IFSx bit	in the interrup	t controller.	
	hese bits should	-		-	-			
	DTC<1:0> = 11 fo			•				
	The Independent T CAM bit is ignored		= 1) mode mus	t be enabled to	o use Center-Al	igned mode. If	ITB = 0, the	
	o operate in Exte		et mode, the IT	B bit must be '	1' and the CLM	10D bit in the I	FCLCONx	

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-	—	—		LEB	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB		
bit 15	•	·	•	÷			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x		
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA		
bit 7				TIOME	INDEX	QLD	bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15	QCAPEN: Q	EI Position Cou	nter Input Cap	ture Enable bit					
		tch event trigge							
		tch event does		-					
bit 14		Ax/QEBx/INDX	•	tal Filter Enable	e bit				
		digital filter is e digital filter is d		sed)					
bit 13-11		: QEAx/QEBx/II		,	Iter Clock Divid	le Select hits			
	111 = 1:128			Bigital input i					
	110 = 1:64 cl								
	101 = 1:32 clock divide								
	100 = 1:16 cl								
	011 = 1:8 clo								
	010 = 1:4 clo 001 = 1:2 clo								
	000 = 1:2 clo								
bit 10-9	OUTFNC<1:0	0>: QEI Module	Output Functi	on Mode Selec	ct bits				
		NCMPx pin goe	-			GEC			
		NCMPx pin goe							
		NCMPx pin goe	es high when P	$OS1CNT \ge QE$	IIGEC				
	00 = Output i								
bit 8		ap QEA and QE	•						
		d QEBx are sw d QEBx are not		quadrature dec	oder logic				
bit 7		OMEx Input Po							
	1 = Input is in								
bit 6		Ot Inverted DXx Input Polari	tv Select hit						
	1 = Input is in	-	ty Select bit						
	0 = Input is n								
bit 5	-	EBx Input Polar	ity Select bit						
	1 = Input is i	nverted							
	0 = Input is r	not inverted							
bit 4	QEAPOL: QE	EAx Input Polar	ity Select bit						
	1 = Input is i	nverted							
	0 = Input is r	not inverted							
bit 3		not inverted is of HOMEx In	put Pin After Po	plarity Control					

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
	Refer to the " UART " (DS70582) section in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for receive or transmit operation.

- 2: This feature is only available for the 16x BRG mode (BRGH = 0).
- 3: This feature is only available on 44-pin and 64-pin devices.
- 4: This feature is only available on 64-pin devices.

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	—		SID10	SID9	SID8	SID7	SID6			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE			
bit 7		•					bit 0			
Legend:										
R = Readabl	R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			
bit 15-13	Unimplemen	ted: Read as '	כי							
bit 12-2	SID<10:0>: S	tandard Identifi	ier bits							
bit 1	SRR: Substitu	ute Remote Re	quest bit							
	When IDE =):								
	1 = Message	will request rer	note transmis	ssion						
	0 = Normal m	lessage								
	When IDE = 1	L <u>:</u>								
	The SRR bit r	must be set to '	1'.							
bit 0	IDE: Extende	d Identifier bit								
	1 = Message	will transmit Ex	tended Ident	ifier						
		will transmit St								

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—		EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown
L							

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<7:0>			
bit 7							bit (

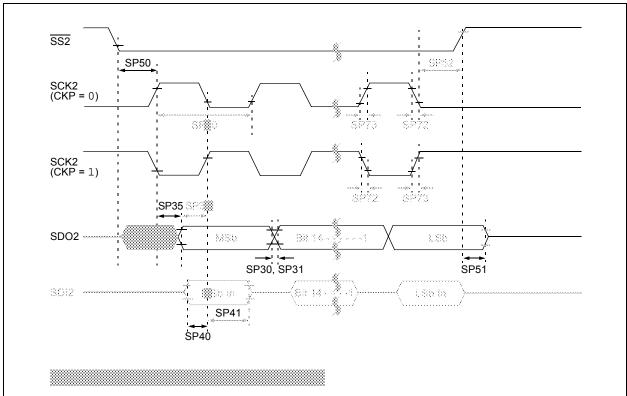
Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

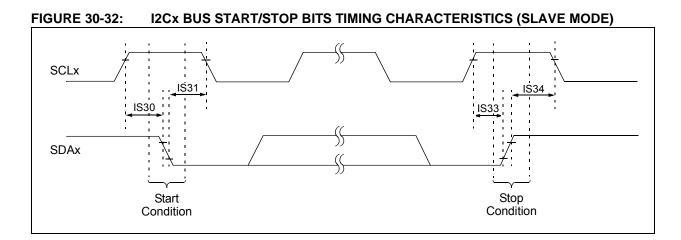
REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	D<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PTGHO	LD<7:0>							
bit 7			bit 7 bi								


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.


Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

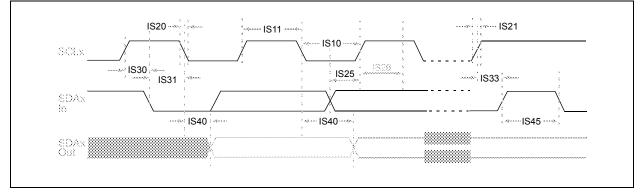

NOTES:

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

